Эр-Рияд
Расположенный в центре Саудовской Аравии, Эр-Рияд (Riyadh) является законодательным, финансовым, административным, дипломатическим и торговым центром страны, в котором проживает более семи миллионов человек.
Город занимает площадь около 1550 квадратных километров и расположен на высоте около 600 метров над уровнем моря в восточной части плато Наджд (Najd) на Аравийском полуострове. Как и на большей части территории Саудовской Аравии, в Эр-Рияде царит пустынный климат с экстремальными летними температурами, которые могут достигать 50°C.
📸 Снимок спутника Sentinel-2C от 14 сентября 2024 года.
На снимке хорошо видна система улиц города, похожая на сеть квадратных кварталов с размером стороны около двух километров.
Эр-Рияд обслуживается Международным аэропортом имени короля Халида, который виден в левом верхнем углу сцены.
Если двигаться от аэропорта на юго-восток, то на фоне оранжевых песков можно увидеть похожий на цветок узор строительной площадки Sand Sports Park. Парк площадью более 17 миллионов квадратных метров является частью масштабного проекта “Спортивный бульвар” — линейного парка, который протянется на 135 км через весь город. Проект соединит более 50 спортивных площадок и будет включать в себя велосипедные и пешеходные дорожки, конные и пешие маршруты, а также несколько развлекательных центров.
На юге находится промышленная часть города, хорошо заметная по ярко-белым крышам зданий.
Источник
#снимки
Расположенный в центре Саудовской Аравии, Эр-Рияд (Riyadh) является законодательным, финансовым, административным, дипломатическим и торговым центром страны, в котором проживает более семи миллионов человек.
Город занимает площадь около 1550 квадратных километров и расположен на высоте около 600 метров над уровнем моря в восточной части плато Наджд (Najd) на Аравийском полуострове. Как и на большей части территории Саудовской Аравии, в Эр-Рияде царит пустынный климат с экстремальными летними температурами, которые могут достигать 50°C.
📸 Снимок спутника Sentinel-2C от 14 сентября 2024 года.
На снимке хорошо видна система улиц города, похожая на сеть квадратных кварталов с размером стороны около двух километров.
Эр-Рияд обслуживается Международным аэропортом имени короля Халида, который виден в левом верхнем углу сцены.
Если двигаться от аэропорта на юго-восток, то на фоне оранжевых песков можно увидеть похожий на цветок узор строительной площадки Sand Sports Park. Парк площадью более 17 миллионов квадратных метров является частью масштабного проекта “Спортивный бульвар” — линейного парка, который протянется на 135 км через весь город. Проект соединит более 50 спортивных площадок и будет включать в себя велосипедные и пешеходные дорожки, конные и пешие маршруты, а также несколько развлекательных центров.
На юге находится промышленная часть города, хорошо заметная по ярко-белым крышам зданий.
Источник
#снимки
Forwarded from НИИ Антропогенеза (ARI)
This media is not supported in your browser
VIEW IN TELEGRAM
В Испании жертвами наводнения стали свыше 200 человек
Но муниципалитету Альмонасид-де-ла-Куба повезло - там расположена древнеримская плотина, построенная более 2.000 лет назад при императоре Августе
Она является самой высокой из всех древнеримских плотин, которые сохранились на сегодняшний день
Именно она спасла местных жителей и инфраструктуру: благодаря древнему сооружению вода в плотине накапливается до предела, а затем её уровень поэтапно падает, уходя от жилых построек
Но муниципалитету Альмонасид-де-ла-Куба повезло - там расположена древнеримская плотина, построенная более 2.000 лет назад при императоре Августе
Она является самой высокой из всех древнеримских плотин, которые сохранились на сегодняшний день
Именно она спасла местных жителей и инфраструктуру: благодаря древнему сооружению вода в плотине накапливается до предела, а затем её уровень поэтапно падает, уходя от жилых построек
Новый индекс для обнаружения пластика на суше
Коллектив исследователей под руководством Дженны Гуффогг (Jenna Guffogg) из Royal Melbourne Institute of Technology University предложил спектральный индекс для обнаружения пластика на пляжах.
Индекс пластикового мусора на пляжах, Beached Plastic Debris Index (BPDI), опирается на данные каналов коротковолнового ИК-излучения (SWIR) спутника WorldView-3 компании Maxar.
Beached Plastic Debris Index = SWIR3 * (SWIR2 - SWIR4) / (SWIR2 + SWIR4)
Чтобы обосновать преимущества нового индекса перед существующими, на пляже в южной части Гипсленда (шт. Виктория, Австралия) разместили 14 пластиковых мишеней площадью около двух квадратных метров каждая. Мишени были сделаны из пластика разных типов и имели размер меньше, чем пиксель спутника (около 3 м²).
Спутниковые изображения, полученные с помощью BPDI, сравнивали с тремя существующими индексами, два из которых были разработаны для обнаружения пластика на суше, а один —на воде. BPDI превзошел все три индекса, которые либо с трудом различали загрязнённые пластиком пиксели на пляже, либо ошибочно классифицировали тень и воду как пластик.
1️⃣ Спектральные каналы VNIR и SWIR WorldView-3.
2️⃣ Спектральные сигнатуры пластиковых мишеней.
#индексы
Коллектив исследователей под руководством Дженны Гуффогг (Jenna Guffogg) из Royal Melbourne Institute of Technology University предложил спектральный индекс для обнаружения пластика на пляжах.
Индекс пластикового мусора на пляжах, Beached Plastic Debris Index (BPDI), опирается на данные каналов коротковолнового ИК-излучения (SWIR) спутника WorldView-3 компании Maxar.
Beached Plastic Debris Index = SWIR3 * (SWIR2 - SWIR4) / (SWIR2 + SWIR4)
Чтобы обосновать преимущества нового индекса перед существующими, на пляже в южной части Гипсленда (шт. Виктория, Австралия) разместили 14 пластиковых мишеней площадью около двух квадратных метров каждая. Мишени были сделаны из пластика разных типов и имели размер меньше, чем пиксель спутника (около 3 м²).
Спутниковые изображения, полученные с помощью BPDI, сравнивали с тремя существующими индексами, два из которых были разработаны для обнаружения пластика на суше, а один —на воде. BPDI превзошел все три индекса, которые либо с трудом различали загрязнённые пластиком пиксели на пляже, либо ошибочно классифицировали тень и воду как пластик.
1️⃣ Спектральные каналы VNIR и SWIR WorldView-3.
2️⃣ Спектральные сигнатуры пластиковых мишеней.
#индексы
Matter Intelligence получил 12 миллионов долларов на разработку набора сенсоров ДЗЗ
Лос-анджелесский стартап Matter Intelligence получил 12 миллионов долларов на разработку уникального набора сенсоров для дистанционного зондирования Земли. Набор, сочетающий в себе оптическую камеру высокого разрешения, тепловой сенсор и гиперспектральный сенсор, предназначен для спутников, беспилотников и самолетов.
“Мы объединяем все три вещи, потому что все хотят объединять данные”, — сказал Вишну Шридхар (Vishnu Sridhar), соучредитель и генеральный директор Matter.
По словам Шридхара, объединяя данные, Matter намерена использовать модели искусственного интеллекта для создания карт, “позволяющих различать все материалы на поверхности и в атмосфере”. Карты Matter должны показать, например, сделана ли крыша из алюминия или черепицы, выявить инвазивную растительность и показать “выбросы, выходящие из каждого трубопровода”.
На основе данных, полученных набором сенсоров, Matter планирует создавать цифровые модели рельефа.
Matter не раскрыла разрешение своих сенсоров, но сообщила, что они будут обеспечивать “субметровую точность”. Стартап также не готов сообщить, когда он планирует запустить свой первый спутник Earth-1 (Emissions And Reflectance Through Hyperspectral).
Полученные средства пойдут на разработку готовых к космическому полету сенсоров и программного обеспечения, которые компания продемонстрирует на воздушной платформе до конца 2025 года, а затем соберет еще один раунд финансирования для обеспечения запуска на орбиту.
Шридхар, бывший инженер по приборам SuperCam марсохода Mars Perseverance, стал одним из основателей Matter Intelligence в начале 2023 года вместе с бывшим инженером Millennium Space Томасом Чрайеном (Thomas Chrien) и бывшим ученым из Калифорнийского технологического института Натаном Стайном (Nathan Stein).
Источник
#гиперспектр #США
Лос-анджелесский стартап Matter Intelligence получил 12 миллионов долларов на разработку уникального набора сенсоров для дистанционного зондирования Земли. Набор, сочетающий в себе оптическую камеру высокого разрешения, тепловой сенсор и гиперспектральный сенсор, предназначен для спутников, беспилотников и самолетов.
“Мы объединяем все три вещи, потому что все хотят объединять данные”, — сказал Вишну Шридхар (Vishnu Sridhar), соучредитель и генеральный директор Matter.
По словам Шридхара, объединяя данные, Matter намерена использовать модели искусственного интеллекта для создания карт, “позволяющих различать все материалы на поверхности и в атмосфере”. Карты Matter должны показать, например, сделана ли крыша из алюминия или черепицы, выявить инвазивную растительность и показать “выбросы, выходящие из каждого трубопровода”.
На основе данных, полученных набором сенсоров, Matter планирует создавать цифровые модели рельефа.
Matter не раскрыла разрешение своих сенсоров, но сообщила, что они будут обеспечивать “субметровую точность”. Стартап также не готов сообщить, когда он планирует запустить свой первый спутник Earth-1 (Emissions And Reflectance Through Hyperspectral).
Полученные средства пойдут на разработку готовых к космическому полету сенсоров и программного обеспечения, которые компания продемонстрирует на воздушной платформе до конца 2025 года, а затем соберет еще один раунд финансирования для обеспечения запуска на орбиту.
Шридхар, бывший инженер по приборам SuperCam марсохода Mars Perseverance, стал одним из основателей Matter Intelligence в начале 2023 года вместе с бывшим инженером Millennium Space Томасом Чрайеном (Thomas Chrien) и бывшим ученым из Калифорнийского технологического института Натаном Стайном (Nathan Stein).
Источник
#гиперспектр #США
Армия США планирует использовать высотные платформы для противокосмических операций и сброса беспилотников
Армия США рассматривает возможность запуска в стратосферу высотных платформ (аэростатов и воздушных шаров) для выполнения различных задач. Одной из таких задач может быть перевозка и запуск беспилотников, которые будут нарушать или уничтожать наземную космическую инфраструктуру врага, в частности, глушилки и станции управления спутниками.
Эндрю Эванс (Andrew Evans), директор армейской оперативной группы по разведке, наблюдению и рекогносцировке (Intelligence, Surveillance and Reconnaissance, ISR), сказал в интервью Breaking Defense 16 октября, что армия рассматривает ряд потенциальных полезных нагрузок, которые могут быть сброшены с воздушных шаров, а также других типов высотных платформ.
“Идея заключается в том, что если мы успешно освоим стратосферу, что мы в конечном итоге и сделаем... это не будет исключительно миссия зондирования, не будет исключительно миссия [разведки], не будет исключительно миссия ретрансляции связи. Это будет все вышеперечисленное, в различных формах и с различными факторами”, — сказал Эванс.
📊 Слайд из презентации командира 1-й космической бригады полковника Дональда Брукса (Donald Brooks) 15 октября на ежегодной конференции Association of the US Army.
Источник
#США #война #псевдоспутник
Армия США рассматривает возможность запуска в стратосферу высотных платформ (аэростатов и воздушных шаров) для выполнения различных задач. Одной из таких задач может быть перевозка и запуск беспилотников, которые будут нарушать или уничтожать наземную космическую инфраструктуру врага, в частности, глушилки и станции управления спутниками.
Эндрю Эванс (Andrew Evans), директор армейской оперативной группы по разведке, наблюдению и рекогносцировке (Intelligence, Surveillance and Reconnaissance, ISR), сказал в интервью Breaking Defense 16 октября, что армия рассматривает ряд потенциальных полезных нагрузок, которые могут быть сброшены с воздушных шаров, а также других типов высотных платформ.
“Идея заключается в том, что если мы успешно освоим стратосферу, что мы в конечном итоге и сделаем... это не будет исключительно миссия зондирования, не будет исключительно миссия [разведки], не будет исключительно миссия ретрансляции связи. Это будет все вышеперечисленное, в различных формах и с различными факторами”, — сказал Эванс.
📊 Слайд из презентации командира 1-й космической бригады полковника Дональда Брукса (Donald Brooks) 15 октября на ежегодной конференции Association of the US Army.
Источник
#США #война #псевдоспутник
Космический проект «Ионозонд», первый этап: спутники «Ионосфера» №1 и №2
5 ноября 2024 года ракетой-носителем «Союз-2.1б» с разгонным блоком «Фрегат» с космодрома Восточный планируется запустить космические аппараты «Ионосфера-М» № 1 и № 2, а также попутную нагрузку, состоящую из 53 малых космических аппаратов.
Спутники «Ионосфера-М» являются частью проекта «Ионозонд», направленного на решение задач мониторинга околоземного космического пространства, фундаментальных исследований космической плазмы и волновых процессов в ней. На орбите планируется создать группировку из четырёх спутников «Ионосфера-М» и одного спутника «Зонд-М». Спутники «Ионосфера-М» № 3 и № 4 будут запущены в 2025 году, а «Зонд-М» будет изготовлен и запущен в рамках следующей Федеральной космической программы.
Комплекс приборов на спутниках «Ионосфера-М» предназначен для измерения параметров ионосферной плазмы, космической радиации и электромагнитных полей:
🔹ЛАЭРТ — ионозонд для измерения вертикального распределения электронной концентрации ионосферной плазмы. Прибор имеет два основных режима работы. В пассивном режиме он работает как радиоспектрометр в диапазоне частот 100 кГц – 20 МГц. В активном режиме — как ионосферный локатор в том же диапазоне частот. Прибор разработан и изготовлен ВНИИЭМ.
🔹ПЭС — приёмник сигналов навигационных спутников GPS/ГЛОНАСС для определения характеристик ионосферы радиозатменным методом. Прибор изготовлен Институтом земного магнетизма, ионосферы и распространения радиоволн имени Н. В. Пушкова РАН (ИЗМИРАН).
🔹 МАЯК — передатчик когерентных радиосигналов на частотах 150 и 400 МГц. По принятым от прибора МАЯК сигналам на наземных станциях будет восстанавливаться распределение плотности ионосферных электронов методом низковысотной томографии. Прибор изготовлен ИЗМИРАН. Наземные станции для работы с прибором МАЯК Росгидромета курирует Институт прикладной геофизики имени академика Е.К. Фёдорова (ИПГ). Работа приёмных станций для исследовательских целей будет проводиться силами ИЗМИРАН, физического факультета Московского государственного университета имени М.В. Ломоносова, Полярного геофизического института, Института солнечно-земной физики Сибирского отделения РАН и других организаций.
🔹 НВК с магнитным и электрическими датчиками — приёмник-анализатор электромагнитных волн в низкочастотном диапазоне до 20 кГц для измерения естественных излучений космической плазмы и сигналов искусственного происхождения от электросетей и наземных низкочастотных передатчиков. Магнитный датчик изготовлен Научно-исследовательским радиофизическим институтом Нижегородского государственного университета имени Н.И. Лобачевского. Электрические датчики изготовлены Научно-производственным предприятием «Астрон-Электроника». Блок электроники НВК изготовлен ИЗМИРАН.
🔹 СПЭР/1 — спектрометр плазмы и энергичной радиации (ионов и электронов в диапазоне 0.05 кэВ – 100 МэВ), предназначенный для мониторинга плазмы, приходящей в ионосферу «сверху» — из магнитосферы. Прибор изготовлен Научно-исследовательским институтом ядерной физики имени Д.В. Скобельцына (НИИЯФ) МГУ.
🔹 ГАЛС/1 — спектрометр галактических космических лучей и магнитосферной радиации (электронов и протонов в диапазоне от 0.15 до 600 МэВ). Прибор изготовлен ИПГ.
🔹 СГ/1 — гамма-спектрометр в диапазоне энергий 20 кэВ – 10 МэВ. Прибор изготовлен НИИЯФ МГУ.
🔹 БКУСНИ — блок для управления работой приборов комплекса целевой аппаратуры, сбора результатов измерений, трансляции потока информации в телеметрическую систему для передачи на Землю. Прибор изготовлен ИКИ РАН.
На спутниках «Ионосфера-М» № 3 и № 4 будут установлены приборы «Озонометр-ТМ» для измерения параметров озонового слоя. Приборы изготовлены НПП «Астрон Электроника» при участии ИКИ РАН.
Изучение ионосферы с помощью спутниковых ионозондов проводилось у нас в стране с помощью специальных спутников и комплекса на станции «Мир» до 1990-х годов, и с тех пор фактически прекратилось. Проект «Ионозонд» возобновит эту важнейшую работу.
🔗 Подробнее о проекте «Ионозонд» на сайте ИКИ РАН.
📸 Макет КА "Ионосфера-М" на выставке ИКИ РАН
#россия
5 ноября 2024 года ракетой-носителем «Союз-2.1б» с разгонным блоком «Фрегат» с космодрома Восточный планируется запустить космические аппараты «Ионосфера-М» № 1 и № 2, а также попутную нагрузку, состоящую из 53 малых космических аппаратов.
Спутники «Ионосфера-М» являются частью проекта «Ионозонд», направленного на решение задач мониторинга околоземного космического пространства, фундаментальных исследований космической плазмы и волновых процессов в ней. На орбите планируется создать группировку из четырёх спутников «Ионосфера-М» и одного спутника «Зонд-М». Спутники «Ионосфера-М» № 3 и № 4 будут запущены в 2025 году, а «Зонд-М» будет изготовлен и запущен в рамках следующей Федеральной космической программы.
Комплекс приборов на спутниках «Ионосфера-М» предназначен для измерения параметров ионосферной плазмы, космической радиации и электромагнитных полей:
🔹ЛАЭРТ — ионозонд для измерения вертикального распределения электронной концентрации ионосферной плазмы. Прибор имеет два основных режима работы. В пассивном режиме он работает как радиоспектрометр в диапазоне частот 100 кГц – 20 МГц. В активном режиме — как ионосферный локатор в том же диапазоне частот. Прибор разработан и изготовлен ВНИИЭМ.
🔹ПЭС — приёмник сигналов навигационных спутников GPS/ГЛОНАСС для определения характеристик ионосферы радиозатменным методом. Прибор изготовлен Институтом земного магнетизма, ионосферы и распространения радиоволн имени Н. В. Пушкова РАН (ИЗМИРАН).
🔹 МАЯК — передатчик когерентных радиосигналов на частотах 150 и 400 МГц. По принятым от прибора МАЯК сигналам на наземных станциях будет восстанавливаться распределение плотности ионосферных электронов методом низковысотной томографии. Прибор изготовлен ИЗМИРАН. Наземные станции для работы с прибором МАЯК Росгидромета курирует Институт прикладной геофизики имени академика Е.К. Фёдорова (ИПГ). Работа приёмных станций для исследовательских целей будет проводиться силами ИЗМИРАН, физического факультета Московского государственного университета имени М.В. Ломоносова, Полярного геофизического института, Института солнечно-земной физики Сибирского отделения РАН и других организаций.
🔹 НВК с магнитным и электрическими датчиками — приёмник-анализатор электромагнитных волн в низкочастотном диапазоне до 20 кГц для измерения естественных излучений космической плазмы и сигналов искусственного происхождения от электросетей и наземных низкочастотных передатчиков. Магнитный датчик изготовлен Научно-исследовательским радиофизическим институтом Нижегородского государственного университета имени Н.И. Лобачевского. Электрические датчики изготовлены Научно-производственным предприятием «Астрон-Электроника». Блок электроники НВК изготовлен ИЗМИРАН.
🔹 СПЭР/1 — спектрометр плазмы и энергичной радиации (ионов и электронов в диапазоне 0.05 кэВ – 100 МэВ), предназначенный для мониторинга плазмы, приходящей в ионосферу «сверху» — из магнитосферы. Прибор изготовлен Научно-исследовательским институтом ядерной физики имени Д.В. Скобельцына (НИИЯФ) МГУ.
🔹 ГАЛС/1 — спектрометр галактических космических лучей и магнитосферной радиации (электронов и протонов в диапазоне от 0.15 до 600 МэВ). Прибор изготовлен ИПГ.
🔹 СГ/1 — гамма-спектрометр в диапазоне энергий 20 кэВ – 10 МэВ. Прибор изготовлен НИИЯФ МГУ.
🔹 БКУСНИ — блок для управления работой приборов комплекса целевой аппаратуры, сбора результатов измерений, трансляции потока информации в телеметрическую систему для передачи на Землю. Прибор изготовлен ИКИ РАН.
На спутниках «Ионосфера-М» № 3 и № 4 будут установлены приборы «Озонометр-ТМ» для измерения параметров озонового слоя. Приборы изготовлены НПП «Астрон Электроника» при участии ИКИ РАН.
Изучение ионосферы с помощью спутниковых ионозондов проводилось у нас в стране с помощью специальных спутников и комплекса на станции «Мир» до 1990-х годов, и с тех пор фактически прекратилось. Проект «Ионозонд» возобновит эту важнейшую работу.
🔗 Подробнее о проекте «Ионозонд» на сайте ИКИ РАН.
📸 Макет КА "Ионосфера-М" на выставке ИКИ РАН
#россия
Media is too big
VIEW IN TELEGRAM
В полете “Ионосфера-М” №1 и №2 и 53 малых спутника
4 ноября 2024 года в 23:18:40 всемирного времени (5 ноября в 02:18:40 московского времени) с площадки №1С космодрома Восточный выполнен пуск ракеты-носителя "Союз-2.1б" №C15000-013 с разгонным блоком "Фрегат" и спутниками "Ионосфера-М" №1 и №2 проекта "Ионозонд", предназначенными для изучения земной ионосферы и мониторинга космической погоды.
Пуск успешный, космические аппараты выведены на околоземную орбиту.
Кроме космических аппаратов "Ионосфера-М" на орбиту выведены 53 малых спутника: ArcticSat-1, CSTP-2.1, CSTP-2.2, CSTP-2.11, HyperView-1G [SXC6-3807], "Политех Юнивёрс-4", "Политех Юнивёрс-5", "РТУ МИРЭА1", SITRO-AIS №№ 13-24 и 37-48, SIT-2086, SIT-HSE, "Хорс-3", "Хорс-4", "ЮЗГУ-60", "Рузаевка-390", "Мордовия", "Леонов" [ФГТУ-1, МГОТУ-1], "Колибри-С", "Дружба АТУРК", "Горизонт", "Владивосток-1", "Визард-ион", TUSUR GO, "Альтаир", "Нохчо", "Норби-3", "СамСат-Ионосфера" (все Россия), а также ZimSat-2 (Зимбабве), Kowsar и Hodhod (оба Иран).
#россия #зимбабве #иран
4 ноября 2024 года в 23:18:40 всемирного времени (5 ноября в 02:18:40 московского времени) с площадки №1С космодрома Восточный выполнен пуск ракеты-носителя "Союз-2.1б" №C15000-013 с разгонным блоком "Фрегат" и спутниками "Ионосфера-М" №1 и №2 проекта "Ионозонд", предназначенными для изучения земной ионосферы и мониторинга космической погоды.
Пуск успешный, космические аппараты выведены на околоземную орбиту.
Кроме космических аппаратов "Ионосфера-М" на орбиту выведены 53 малых спутника: ArcticSat-1, CSTP-2.1, CSTP-2.2, CSTP-2.11, HyperView-1G [SXC6-3807], "Политех Юнивёрс-4", "Политех Юнивёрс-5", "РТУ МИРЭА1", SITRO-AIS №№ 13-24 и 37-48, SIT-2086, SIT-HSE, "Хорс-3", "Хорс-4", "ЮЗГУ-60", "Рузаевка-390", "Мордовия", "Леонов" [ФГТУ-1, МГОТУ-1], "Колибри-С", "Дружба АТУРК", "Горизонт", "Владивосток-1", "Визард-ион", TUSUR GO, "Альтаир", "Нохчо", "Норби-3", "СамСат-Ионосфера" (все Россия), а также ZimSat-2 (Зимбабве), Kowsar и Hodhod (оба Иран).
#россия #зимбабве #иран
Spire Global и OroraTech создадут систему мониторинга лесных пожаров из космоса
Лаборатория реактивного движения NASA заключила контракт с компанией Spire Global (США) на разработку космических средств раннего обнаружения и мониторинга лесных пожаров. Spire объявила, что для разработки решения будет сотрудничать с немецкой компанией OroraTech.
OroraTech обладает опытом в области теплового инфракрасного зондирования для раннего обнаружения лесных пожаров. Недавно компания завершила раунд финансирования, получив 27 миллионов долларов инвестиций. OroraTech эксплуатирует тепловые инфракрасные датчики, размещенные на спутниках, разработанных и изготовленных компанией Spire.
По условиям контракта Spire и OroraTech должны разработать недорогое космическое решение для мониторинга районов США, подверженных лесным пожарам. В 2023 году они получили контракт от Канадского космического агентства на подготовительные работы по созданию специальной спутниковой группировки для мониторинга лесных пожаров в Канаде.
OroraTech основана в 2018 году. Имеет штаб-квартиру в Мюнхене (Германия), а также представительства в Канаде, Бразилии, Австралии и Греции. В штате более 110 специалистов.
🗺 Карта распространения пожара на острове Родос (Греция) по данным OroraTech (источник).
#германия #США #канада #LST
Лаборатория реактивного движения NASA заключила контракт с компанией Spire Global (США) на разработку космических средств раннего обнаружения и мониторинга лесных пожаров. Spire объявила, что для разработки решения будет сотрудничать с немецкой компанией OroraTech.
OroraTech обладает опытом в области теплового инфракрасного зондирования для раннего обнаружения лесных пожаров. Недавно компания завершила раунд финансирования, получив 27 миллионов долларов инвестиций. OroraTech эксплуатирует тепловые инфракрасные датчики, размещенные на спутниках, разработанных и изготовленных компанией Spire.
По условиям контракта Spire и OroraTech должны разработать недорогое космическое решение для мониторинга районов США, подверженных лесным пожарам. В 2023 году они получили контракт от Канадского космического агентства на подготовительные работы по созданию специальной спутниковой группировки для мониторинга лесных пожаров в Канаде.
OroraTech основана в 2018 году. Имеет штаб-квартиру в Мюнхене (Германия), а также представительства в Канаде, Бразилии, Австралии и Греции. В штате более 110 специалистов.
🗺 Карта распространения пожара на острове Родос (Греция) по данным OroraTech (источник).
#германия #США #канада #LST
Forwarded from Геоскан.Космос
Станции открытых сетей наземных станций СОНИКС и SatNOGS приняли первые сигналы с МКА RTU MIREA1, TUSUR GO, HORIZON, COLIBRI-S, VIZARD-ION. Это означает, что антенны на спутниках раскрылись и приемопередатчики работают в нормальном режиме. Работа с кубсатами продолжается через центр управления полетами Геоскана.
Станции сетей продолжают мониторинг этих аппаратов, а также многих других спутников этого запуска.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from SPUTNIX
Мы получили телеметрические сигналы после вывода новой партии из 24 космических аппаратов SITRO-AIS и 4 спутников, созданных в рамках научно-образовательного проекта Space-π.
🛰️ Все 28 КА были приняты на управление!
Поздравляем всех причастных с успешным запуском
Please open Telegram to view this post
VIEW IN TELEGRAM
Индонезия и Китай подписали меморандум о взаимопонимании по созданию группировки спутников ДЗЗ
Национальное агентство исследований и инноваций Индонезии (BRIN) и Инновационная академия микроспутников Китайской академии наук (IAMCAS) подписали меморандум о взаимопонимании по созданию спутниковой группировки дистанционного зондирования Земли (ДЗЗ).
Меморандум предполагает создание группировки из 19 спутников с оптическими и радарными датчиками для военных и гражданских целей.
В рамках сотрудничества с Китаем BRIN будет помогать разрабатывать спутники и передавать их производство частному сектору. BRIN также будет выступать в качестве поставщика спутниковых данных.
Источник
#индонезия #китай
Национальное агентство исследований и инноваций Индонезии (BRIN) и Инновационная академия микроспутников Китайской академии наук (IAMCAS) подписали меморандум о взаимопонимании по созданию спутниковой группировки дистанционного зондирования Земли (ДЗЗ).
Меморандум предполагает создание группировки из 19 спутников с оптическими и радарными датчиками для военных и гражданских целей.
В рамках сотрудничества с Китаем BRIN будет помогать разрабатывать спутники и передавать их производство частному сектору. BRIN также будет выступать в качестве поставщика спутниковых данных.
Источник
#индонезия #китай
This media is not supported in your browser
VIEW IN TELEGRAM
Работа с элементами SpatVector
При работе с векторными данными в
Рассмотрим несколько примеров.
1️⃣ Определим число элементов векторных данных. Сначала создадим тестовый SpatVector из данных, поставляемых вместе с пакетом:
Вектор**
Число элементов
2️⃣ Добавление атрибута в вектор. Создавать векторные данные с заданным набором атрибутов мы умеем. Теперь добавим атрибут к уже имеющимся данным.
Добавим идентификаторы, равные номеру элемента в векторе. Сделаем это двумя способами:
3️⃣ Получение координат элементов (геометрии). Координаты элементов векторов без атрибутов возвращает функция
На выходе получается матрица значений координат. Или вектор (просто vector), или список, или таблица — в зависимости от настроек функции, которых очень много.
4️⃣ Конвейер функций. Конвейерная обработка функций в R (
Например, вместо
мы могли бы записать
* Разумеется, речь идет о перегрузке функций, точнее о перегрузке методов классов
** Для краткости, здесь мы называем векторные данные просто векторами.
#R
При работе с векторными данными в
terra
многие задачи не требуют особых пояснений, потому что решаются теми же функциями, которые использовались для растровых данных, или даже функциями из “базового” R*.Рассмотрим несколько примеров.
1️⃣ Определим число элементов векторных данных. Сначала создадим тестовый SpatVector из данных, поставляемых вместе с пакетом:
library(terra)
v <- vect(system.file("ex/lux.shp", package="terra"))
v
# class : SpatVector
# geometry : polygons
# dimensions : 12, 6 (geometries, attributes)
# extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
# source : lux.shp
# coord. ref. : lon/lat WGS 84 (EPSG:4326)
# names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
# type : <num> <chr> <num> <chr> <num> <int>
# values : 1 Diekirch 1 Clervaux 312 18081
# 1 Diekirch 2 Diekirch 218 32543
# 1 Diekirch 3 Redange 259 18664
Вектор**
v
содержит 12 элементов и 6 атрибутов (переменных):names(v)
# [1] "ID_1" "NAME_1" "ID_2" "NAME_2" "AREA" "POP"
Число элементов
v
можно подсчитать функциями:length(v)
nrow(v)
2️⃣ Добавление атрибута в вектор. Создавать векторные данные с заданным набором атрибутов мы умеем. Теперь добавим атрибут к уже имеющимся данным.
Добавим идентификаторы, равные номеру элемента в векторе. Сделаем это двумя способами:
v[["ID_new_1"]] <- 1:nrow(v)
v$ID_new_2 <- seq.int(nrow(v))
3️⃣ Получение координат элементов (геометрии). Координаты элементов векторов без атрибутов возвращает функция
geom
:geom(v)
# geom part x y hole
# [1,] 1 1 6.026519 50.17767 0
# [2,] 1 1 6.031361 50.16563 0
# [3,] 1 1 6.035646 50.16410 0
# [4,] 1 1 6.042747 50.16157 0
# [5,] 1 1 6.043894 50.16116 0
# ...
На выходе получается матрица значений координат. Или вектор (просто vector), или список, или таблица — в зависимости от настроек функции, которых очень много.
4️⃣ Конвейер функций. Конвейерная обработка функций в R (
|>
) встроена в язык, начиная с версии R 4.1.0. Конвейер принимает вывод одной функции и передает его в другую функцию в качестве аргумента. Иногда это делает процесс обработки данных более наглядным. Например, вместо
v <- vect(system.file("ex/lux.shp", package="terra"))
мы могли бы записать
v <- system.file("ex/lux.shp", package="terra") |>
vect()
* Разумеется, речь идет о перегрузке функций, точнее о перегрузке методов классов
Spat*
пакета terra
.** Для краткости, здесь мы называем векторные данные просто векторами.
#R
Forwarded from Space-π
Первые сигналы со всех 16 запущенных МКА проекта Space-π получены!🛰
Телеметрию принимают наземные станции сетей «Эфир» и «СОНИКС». У аппаратов начинается этап тестирования и ввода в эксплуатацию.
Поздравляем всех с успешным включением спутников. Верим в их красивое научное и полезное будущее! Удачи в работе!🤗
Телеметрию принимают наземные станции сетей «Эфир» и «СОНИКС». У аппаратов начинается этап тестирования и ввода в эксплуатацию.
Поздравляем всех с успешным включением спутников. Верим в их красивое научное и полезное будущее! Удачи в работе!🤗
🔎 Google Dataset Search (https://datasetsearch.research.google.com/) — поисковая система от Google, которая помогает исследователям искать в Интернете данные, находящиеся в свободном доступе.
Успех поиска данных в значительной степени зависит от использования поставщиками данных метаданных, соответствующих стандартам консорциума schema.org. Руководство для поставщиков данных находится 🔗 здесь.
Поиск данных может фильтровать результаты по типу данных, например, по изображениям или тексту. Поиск доступен в мобильных устройствах.
Google Dataset Search дополняет Google Scholar (https://scholar.google.com), поисковую систему компании для академических исследований и отчетов.
#справка
Успех поиска данных в значительной степени зависит от использования поставщиками данных метаданных, соответствующих стандартам консорциума schema.org. Руководство для поставщиков данных находится 🔗 здесь.
Поиск данных может фильтровать результаты по типу данных, например, по изображениям или тексту. Поиск доступен в мобильных устройствах.
Google Dataset Search дополняет Google Scholar (https://scholar.google.com), поисковую систему компании для академических исследований и отчетов.
#справка