Классификация сельскохозяйственных культур Канады: карты и набор данных
Canada AAFC* Annual Crop Inventory (2009–2023) — ежегодные карты классификации сельскохозяйственных культур (и не только) Канады с общей точностью не менее 85% и пространственным разрешением 30 м (в 2009 и 2010 годах — 56 м).
🌍 Данные на Earth Engine
🔗 Код примера
*AAFC — Agriculture and Agri-Food Canada
Набор данных о пахотных землях Канады с метками, полученными из Canadian Annual Crop Inventory. Данные содержат 78 536 вручную проверенных изображений высокого разрешения (10 м/пиксель, 640 x 640 м) с географической привязкой из 10 классов сельскохозяйственных культур, собранных за четыре года производства (2017–2020) и пять месяцев (июнь-октябрь). Каждый экземпляр содержит 12 спектральных каналов, RGB-изображение и дополнительные каналы вегетационных индексов. По отдельности каждая категория содержит не менее 4 800 изображений. Открыт доступ к модели и исходному коду, которые дают возможность пользователю предсказать класс культуры по одному изображению (ResNet, DenseNet, EfficientNet) или по последовательности изображений (LRCN, 3D-CNN).
📖 Описание методики
🖥 Репозиторий проекта
#данные #датасет #GEE #сельхоз #нейронки
Canada AAFC* Annual Crop Inventory (2009–2023) — ежегодные карты классификации сельскохозяйственных культур (и не только) Канады с общей точностью не менее 85% и пространственным разрешением 30 м (в 2009 и 2010 годах — 56 м).
🌍 Данные на Earth Engine
🔗 Код примера
*AAFC — Agriculture and Agri-Food Canada
Набор данных о пахотных землях Канады с метками, полученными из Canadian Annual Crop Inventory. Данные содержат 78 536 вручную проверенных изображений высокого разрешения (10 м/пиксель, 640 x 640 м) с географической привязкой из 10 классов сельскохозяйственных культур, собранных за четыре года производства (2017–2020) и пять месяцев (июнь-октябрь). Каждый экземпляр содержит 12 спектральных каналов, RGB-изображение и дополнительные каналы вегетационных индексов. По отдельности каждая категория содержит не менее 4 800 изображений. Открыт доступ к модели и исходному коду, которые дают возможность пользователю предсказать класс культуры по одному изображению (ResNet, DenseNet, EfficientNet) или по последовательности изображений (LRCN, 3D-CNN).
📖 Описание методики
🖥 Репозиторий проекта
#данные #датасет #GEE #сельхоз #нейронки