Метод удаления дымки со снимков дистанционного зондирования при помощи генеративной состязательной сети
Дымка — помутнение воздуха, вызванное наличием в нём продуктов конденсации водяного пара (мельчайших капелек воды или кристалликов льда) — снижает качество снимков, полученных оптическими методами дистанционного зондирования. Она уменьшает контраст изображения, снижает различия в цвете и различимость объектов на снимке.
Для удаления дымки (dehazing) применяются свёрточные нейронные сети (CNN), что позволило достичь некоторого прогресса, но эти методы нуждаются в совершенствовании. В работе
📖 Shen, H., Zhong, T., Jia, Y., & Wu, C. (2024). Remote sensing image dehazing using generative adversarial network with texture and color space enhancement. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-63259-6
исследованы применения генеративных состязательных сетей (GAN) к решению проблемы удаления дымки. Предложена новая архитектура GAN для восстановления покрытых дымкой изображений.
Для проверки эффективности предложенного метода используются синтетические и реальные изображения с дымкой. По сравнению с другими популярными методами, результаты удаления дымки, полученные с помощью предложенного метода, очень похожи на изображения без дымки.
Результаты удаления дымки:
1️⃣ на снимках с различной плотностью дымки.
2️⃣ на реальных снимках дистанционного зондирования.
3️⃣ на реальных снимках дистанционного зондирования при различных сценариях.
#нейронки
Дымка — помутнение воздуха, вызванное наличием в нём продуктов конденсации водяного пара (мельчайших капелек воды или кристалликов льда) — снижает качество снимков, полученных оптическими методами дистанционного зондирования. Она уменьшает контраст изображения, снижает различия в цвете и различимость объектов на снимке.
Для удаления дымки (dehazing) применяются свёрточные нейронные сети (CNN), что позволило достичь некоторого прогресса, но эти методы нуждаются в совершенствовании. В работе
📖 Shen, H., Zhong, T., Jia, Y., & Wu, C. (2024). Remote sensing image dehazing using generative adversarial network with texture and color space enhancement. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-63259-6
исследованы применения генеративных состязательных сетей (GAN) к решению проблемы удаления дымки. Предложена новая архитектура GAN для восстановления покрытых дымкой изображений.
Для проверки эффективности предложенного метода используются синтетические и реальные изображения с дымкой. По сравнению с другими популярными методами, результаты удаления дымки, полученные с помощью предложенного метода, очень похожи на изображения без дымки.
Результаты удаления дымки:
1️⃣ на снимках с различной плотностью дымки.
2️⃣ на реальных снимках дистанционного зондирования.
3️⃣ на реальных снимках дистанционного зондирования при различных сценариях.
#нейронки
👍11👎1
Раннее обнаружение дыма лесных пожаров по снимкам Landsat с помощью облегченной сверточной нейросети
📖 Zhao, L., Liu, J., Peters, S., Li, J., Oliver, S., & Mueller, N. (2022). Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model. Remote Sensing, 14(13), 3047. https://doi.org/10.3390/rs14133047
Шлейф дыма — первое, что видно из космоса при возникновении лесных пожаров. Поэтому обнаружение дыма важно для раннего обнаружения пожара.
Для обнаружения дыма на спутниковых снимках использовано глубокое обучение.
Создан набор данных, состоящий из 1836 изображений трех классов: “Smoke”, “Clear” и “Other_aerosol”. Каждое изображение состоит из шести каналов снимков, полученных спутниками Landsat 5 и Landsat 8 с пространственным разрешением 30 метров.
Для использования модели обнаружения дыма на борту малого космического аппарата (например, такого) разработана облегченная модель сверточной нейронной сети (CNN) — Variant Input Bands for Smoke Detection (VIB_SD), которая достигла конкурентоспособной точности с современной моделью SAFA, имея менее 2% от ее количества параметров.
Исследование показало, что модель, обученная с использованием мультиспектральных спутниковых данных, может эффективно обнаруживать смешанный с облаками дым от пожара на небольших географических территориях.
📸 Шлейфы дыма от лесных пожаров на снимках Landsat-8 OLI.
#пожары #нейронки
📖 Zhao, L., Liu, J., Peters, S., Li, J., Oliver, S., & Mueller, N. (2022). Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model. Remote Sensing, 14(13), 3047. https://doi.org/10.3390/rs14133047
Шлейф дыма — первое, что видно из космоса при возникновении лесных пожаров. Поэтому обнаружение дыма важно для раннего обнаружения пожара.
Для обнаружения дыма на спутниковых снимках использовано глубокое обучение.
Создан набор данных, состоящий из 1836 изображений трех классов: “Smoke”, “Clear” и “Other_aerosol”. Каждое изображение состоит из шести каналов снимков, полученных спутниками Landsat 5 и Landsat 8 с пространственным разрешением 30 метров.
Для использования модели обнаружения дыма на борту малого космического аппарата (например, такого) разработана облегченная модель сверточной нейронной сети (CNN) — Variant Input Bands for Smoke Detection (VIB_SD), которая достигла конкурентоспособной точности с современной моделью SAFA, имея менее 2% от ее количества параметров.
Исследование показало, что модель, обученная с использованием мультиспектральных спутниковых данных, может эффективно обнаруживать смешанный с облаками дым от пожара на небольших географических территориях.
📸 Шлейфы дыма от лесных пожаров на снимках Landsat-8 OLI.
#пожары #нейронки
🔥7👍1
Обнаружение кораблей на радарных снимках Umbra [ссылка]
Несколько недель назад компания Umbra, занимающаяся спутниковой радарной съемкой, выложила в открытый доступ почти 1000 спутниковых снимков кораблей по всему миру [ссылка]. Снимки доступны в нескольких форматах и их общий размер составляет почти 7,5 ТБ.
В статье описан процесс обучения модели обнаружения кораблей, работающей на радарных снимках Umbra. Использована модель YOLOv5 и набор данных High-Resolution SAR Images Dataset (HRSID) для её обучения.
#SAR #нейронки #данные
Несколько недель назад компания Umbra, занимающаяся спутниковой радарной съемкой, выложила в открытый доступ почти 1000 спутниковых снимков кораблей по всему миру [ссылка]. Снимки доступны в нескольких форматах и их общий размер составляет почти 7,5 ТБ.
В статье описан процесс обучения модели обнаружения кораблей, работающей на радарных снимках Umbra. Использована модель YOLOv5 и набор данных High-Resolution SAR Images Dataset (HRSID) для её обучения.
#SAR #нейронки #данные
❤4🔥4👍2👀1
Российские ученые предложили нейросетевой подход для прогнозирования засух на период от нескольких месяцев до года [ссылка]
Метод основан на использовании доступных ежемесячных климатических данных. Специалисты Сколтеха и Сбера разработали несколько нейросетевых моделей, которые протестировали на данных по пяти регионам, расположенным на разных континентах и в разных климатических зонах. Климатологи спрогнозировали вероятность засух на севере Казахстана, в Польше, штате Миссури (США), штате Гояс (Бразилия) и индийском штате Мадхья-Прадеш.
Лучшие результаты показала модификация модели EarthFormer на основе трансформера. Для долгосрочного прогнозирования больше всего подходит модификация модели ConvLSTM.
Прогнозы засух помогут сельскохозяйственным предприятиям в планировании своей деятельности, а страховщикам и банкам в оценке соответствующих рисков.
📖 Препринт на arXiv
📖 Marusov, A., Grabar, V., Maximov, Y., Sotiriadi, N., Bulkin, A., & Zaytsev, A. (2024). Long-term drought prediction using deep neural networks based on geospatial weather data. Environmental Modelling & Software, 179, 106127. https://doi.org/10.1016/j.envsoft.2024.106127
#засуха #нейронки
Метод основан на использовании доступных ежемесячных климатических данных. Специалисты Сколтеха и Сбера разработали несколько нейросетевых моделей, которые протестировали на данных по пяти регионам, расположенным на разных континентах и в разных климатических зонах. Климатологи спрогнозировали вероятность засух на севере Казахстана, в Польше, штате Миссури (США), штате Гояс (Бразилия) и индийском штате Мадхья-Прадеш.
Лучшие результаты показала модификация модели EarthFormer на основе трансформера. Для долгосрочного прогнозирования больше всего подходит модификация модели ConvLSTM.
Прогнозы засух помогут сельскохозяйственным предприятиям в планировании своей деятельности, а страховщикам и банкам в оценке соответствующих рисков.
📖 Препринт на arXiv
📖 Marusov, A., Grabar, V., Maximov, Y., Sotiriadi, N., Bulkin, A., & Zaytsev, A. (2024). Long-term drought prediction using deep neural networks based on geospatial weather data. Environmental Modelling & Software, 179, 106127. https://doi.org/10.1016/j.envsoft.2024.106127
#засуха #нейронки
👍5
geodl
В R есть множество пакетов для работы с пространственными данными. А вот пакетов, где для анализа таких данных используются методы глубокого обучения (deep learning, DL), напротив, совсем мало.
Недавно появился пакет geodl, предоставляющий инструменты для семантической сегментации пространственных данных с помощью DL на основе свёрточной нейронной сети (CNN).
geodl построен на базе пакета torch, который поддерживает реализацию DL с помощью языков R и C++ без необходимости установки среды Python/PyTorch. Это значительно упрощает программную среду, необходимую для реализации DL в R. Растровые данные в geodl обрабатываются с помощью известного пакета terra, который также использует C++. Циклы обучения реализуются с помощью пакета luz.
Подробности о geodl изложены в 📖 препринте.
#R #нейронки
В R есть множество пакетов для работы с пространственными данными. А вот пакетов, где для анализа таких данных используются методы глубокого обучения (deep learning, DL), напротив, совсем мало.
Недавно появился пакет geodl, предоставляющий инструменты для семантической сегментации пространственных данных с помощью DL на основе свёрточной нейронной сети (CNN).
geodl построен на базе пакета torch, который поддерживает реализацию DL с помощью языков R и C++ без необходимости установки среды Python/PyTorch. Это значительно упрощает программную среду, необходимую для реализации DL в R. Растровые данные в geodl обрабатываются с помощью известного пакета terra, который также использует C++. Циклы обучения реализуются с помощью пакета luz.
Подробности о geodl изложены в 📖 препринте.
#R #нейронки
👍6
Обзор методов интерпретируемого машинного обучения для прогнозирования погоды и климата
В последнее время передовые модели машинного обучения достигли высокой точности прогнозирования погоды и климата. Большинство из этих моделей является “черными ящиками”: они выдают результаты, не позволяя пользователю заглянуть внутрь, чтобы разобраться, как именно был получен тот или иной прогноз. Поэтому важную роль приобретает развитие интерпретируемых методов машинного обучения.
В 📖 статье рассмотрены современные подходы к интерпретируемому машинному обучению, применяемые для метеорологических прогнозов. Подходы делятся на две группы: (1) методы интерпретации post-hoc, объясняющие предварительно обученные модели, такие как методы атрибуции на основе возмущений, теории игр и градиентные методы; (2) разработка интерпретируемых моделей с нуля с помощью таких архитектур, как ансамбли деревьев или объясняемые (explainable) нейронные сети. Коротко описан каждый метод, и то как именно он позволяет понять прогнозы, раскрывая метеорологические взаимосвязи, улавливаемые машинным обучением. В финале работы обсуждаются проблемы исследования и перспективы на будущее.
📖 Yang, R., Hu, J., Li, Z., Mu, J., Yu, T., Xia, J., Li, X., Dasgupta, A., & Xiong, H. (2024). Interpretable machine learning for weather and climate prediction: A review. Atmospheric Environment, 338, 120797. https://doi.org/10.1016/j.atmosenv.2024.120797
#нейронки #погода #ИИ #климат
В последнее время передовые модели машинного обучения достигли высокой точности прогнозирования погоды и климата. Большинство из этих моделей является “черными ящиками”: они выдают результаты, не позволяя пользователю заглянуть внутрь, чтобы разобраться, как именно был получен тот или иной прогноз. Поэтому важную роль приобретает развитие интерпретируемых методов машинного обучения.
В 📖 статье рассмотрены современные подходы к интерпретируемому машинному обучению, применяемые для метеорологических прогнозов. Подходы делятся на две группы: (1) методы интерпретации post-hoc, объясняющие предварительно обученные модели, такие как методы атрибуции на основе возмущений, теории игр и градиентные методы; (2) разработка интерпретируемых моделей с нуля с помощью таких архитектур, как ансамбли деревьев или объясняемые (explainable) нейронные сети. Коротко описан каждый метод, и то как именно он позволяет понять прогнозы, раскрывая метеорологические взаимосвязи, улавливаемые машинным обучением. В финале работы обсуждаются проблемы исследования и перспективы на будущее.
📖 Yang, R., Hu, J., Li, Z., Mu, J., Yu, T., Xia, J., Li, X., Dasgupta, A., & Xiong, H. (2024). Interpretable machine learning for weather and climate prediction: A review. Atmospheric Environment, 338, 120797. https://doi.org/10.1016/j.atmosenv.2024.120797
#нейронки #погода #ИИ #климат
👍7
Классификация сельскохозяйственных культур Канады: карты и набор данных
Canada AAFC* Annual Crop Inventory (2009–2023) — ежегодные карты классификации сельскохозяйственных культур (и не только) Канады с общей точностью не менее 85% и пространственным разрешением 30 м (в 2009 и 2010 годах — 56 м).
🌍 Данные на Earth Engine
🔗 Код примера
*AAFC — Agriculture and Agri-Food Canada
Набор данных о пахотных землях Канады с метками, полученными из Canadian Annual Crop Inventory. Данные содержат 78 536 вручную проверенных изображений высокого разрешения (10 м/пиксель, 640 x 640 м) с географической привязкой из 10 классов сельскохозяйственных культур, собранных за четыре года производства (2017–2020) и пять месяцев (июнь-октябрь). Каждый экземпляр содержит 12 спектральных каналов, RGB-изображение и дополнительные каналы вегетационных индексов. По отдельности каждая категория содержит не менее 4 800 изображений. Открыт доступ к модели и исходному коду, которые дают возможность пользователю предсказать класс культуры по одному изображению (ResNet, DenseNet, EfficientNet) или по последовательности изображений (LRCN, 3D-CNN).
📖 Описание методики
🖥 Репозиторий проекта
#данные #датасет #GEE #сельхоз #нейронки
Canada AAFC* Annual Crop Inventory (2009–2023) — ежегодные карты классификации сельскохозяйственных культур (и не только) Канады с общей точностью не менее 85% и пространственным разрешением 30 м (в 2009 и 2010 годах — 56 м).
🌍 Данные на Earth Engine
🔗 Код примера
*AAFC — Agriculture and Agri-Food Canada
Набор данных о пахотных землях Канады с метками, полученными из Canadian Annual Crop Inventory. Данные содержат 78 536 вручную проверенных изображений высокого разрешения (10 м/пиксель, 640 x 640 м) с географической привязкой из 10 классов сельскохозяйственных культур, собранных за четыре года производства (2017–2020) и пять месяцев (июнь-октябрь). Каждый экземпляр содержит 12 спектральных каналов, RGB-изображение и дополнительные каналы вегетационных индексов. По отдельности каждая категория содержит не менее 4 800 изображений. Открыт доступ к модели и исходному коду, которые дают возможность пользователю предсказать класс культуры по одному изображению (ResNet, DenseNet, EfficientNet) или по последовательности изображений (LRCN, 3D-CNN).
📖 Описание методики
🖥 Репозиторий проекта
#данные #датасет #GEE #сельхоз #нейронки
👍9😱2