Спутник ДЗЗ
3.11K subscribers
2.43K photos
139 videos
187 files
2.18K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Саудовская компания Neo Space Group приобрела UP42 у Airbus

Саудовская компания Neo Space Group (NSG) приобрела маркетплейс спутниковых данных UP42 у компании Airbus Defence and Space.

UP42 предоставляет клиентам спутниковые и аэроснимки, а также цифровые модели рельефа. Ее партнерами являются известные поставщики спутниковых данных: Airbus, Planet, BlackSky, Umbra, ICEYE, Capella Space и другие. Компания базируется в Берлине.

NSG — космическое подразделение суверенного фонда Саудовской Аравии, созданное в начале этого года. В NSG заявили, что UP42 станет частью геопространственного подразделения компании.

Источник

#KSA
Модернизированная китайская ракета вывела на орбиту спутник радарного и оптического наблюдения Земли

4 декабря 2024 года в 04:46 всемирного времени с космодрома Сичан (Китай) осуществлен пуск ракеты-носителя Kuaizhou-1A (“Куайчжоу-1А”) со спутником “Хайшао-1” (Haishao-1, кит. 海哨一号). Космический аппарат успешно выведен на околоземную орбиту.

Модернизированная твердотопливная ракета-носитель Kuaizhou-1A, по сравнению с предыдущей версией, имеет удлиненные первую и вторую ступени, а также увеличенный с 1,4 м до 1,8 м диаметр головного обтекателя. Грузоподъемность на низкой околоземной орбите (НОО) увеличена с 300 кг до 450 кг, а грузоподъемность на солнечно-синхронной орбите высотой 700 км выросла с 200 кг до более чем 300 кг.

Kuaizhou-1A эксплуатируется компанией Expace, коммерческим подразделением государственной Китайской корпорации аэрокосмической науки и промышленности (CASIC). В арсенале Expace есть более крупная твердотопливная ракета Kuaizhou-11, с обтекателем диаметром 2,65 м, рассчитанная на запуск до 1500 кг на НОО. Expace также разрабатывает многоразовые ракеты-носители на метановом топливе.

Китай имеет большой выбор твердотопливных ракет: Long March 11, Jielong-1 и Jielong-3 от CASC, Hyperbola-1 от Ispace, Ceres-1 от Galactic Energy, Kinetica-1 от CAS Space, а также самая большая — Gravity-1 от Orienspace. Большинство из них — легкие твердотопливные ракеты. Некоторые запускались как с суши, так и с морских платформ.

Весьма примечательна полезная нагрузка Kuaizhou-1A: 🛰 Haishao-1 — ультранизкоорбитальный (ultra-low-orbit) спутник дистанционного зондирования Земли (ДЗЗ) с низким наклонением орбиты (43°). Расчетная высота орбиты спутника — 350 км. Выбранное наклонение орбиты позволяет улучшить пространственно-временной охват наблюдениями в средних и низких широтах, в частности, в Южно-Китайском море.

Haishao-1 оснащен мультиполяризационным радаром, ведущим съемку в X-диапазоне с пространственным разрешением выше 1 метра. Есть возможность съемки с разными комбинациями поляризаций. Аппаратура спутника позволяет обрабатывать полученные данные на борту для извлечения динамической информации об объектах на морской поверхности. Кроме того, на спутнике установлена камера для ночной съемки, которая, в частности, позволяет вести съемку синхронно с радаром.

Haishao-1 установил сразу несколько всекитайских рекордов: рекордное время от начала разработки (февраль 2024 года) до запуска, первый коммерческий мультиполяризационный радарный спутник, первый интегрированный спутник ДЗЗ с возможностью радарной и оптической съемки, а также первый сверхнизкоорбитальный радарный спутник.

📸 Художественное изображение спутника Haishao-1 (источник)

#китай #SAR #оптика #VLEO #onboard
Радарный спутник Sentinel-1C выведен на орбиту

5 декабря 2024 года в 21:20 всемирного времени с космодрома Куру во Французской Гвиане осуществлен пуск ракеты-носителя Vega-C (VV25) с европейским радарным спутником Sentinel-1C. Космический аппарат успешно выведен на солнечно-синхронную орбиту высотой 700 км.

Состоявшийся пуск стал первым для ракет Vega-C после аварии в декабре 2022 г.

Sentinel-1C пополнит европейскую группировку радарных спутников Sentinel-1, в которой сейчас работает единственный спутник — Sentinel-1A, запущенный в 2014 году.

Основной полезной нагрузкой спутников Sentinel-1 является радар С-диапазона — C-band synthetic-aperture radar (C-SAR). Спутники также оборудованы прибором АИС для идентификации морских судов.

📸 Художественное изображение спутника Sentinel-1 (источник)

#SAR #ESA
Разработка “Росэлектроники” способна прогнозировать опасные природные явления

Холдинг “Росэлектроника” госкорпорации Ростех разработал программный модуль «Прогнозирование», который использует методы искусственного интеллекта и предназначен для прогнозирования опасных природных явлений — штормов, землетрясений, извержений вулканов. Новое ПО стало частью комплекса мониторинга метеорологической и ледовой обстановки.

На основе данных о температуре поверхности суши и моря, скорости воздушных потоков, движении земной коры, ледовых и снежных масс комплекс способен рассчитать вероятность возникновения опасного природного явления и спрогнозировать траекторию его следования.

Разработкой комплекса приема, обработки и ретрансляции космической гидрометеорологической информации занимается входящий в “Росэлектронику” НИИ телевидения — разработчик видеоинформационных систем для мониторинга, навигации и управления объектами.

“Новый модуль не заменяет полностью работу метеоролога, но существенно ее облегчает, поскольку система на ранних стадиях отслеживает опасные природные явления и сигнализирует об их зарождении. Сейчас мы занимаемся отладкой программного обеспечения и параллельно завершаем процедуру сертификации оборудования. К концу 2024 года предприятие будет готово к поставкам системы первым заказчикам”, — отметил генеральный директор НИИ телевидения Алексей Никитин.

Источник

#погода #россия
Фильтр Савицкого-Голая для коллекции MODIS

Фильтр Савицкого-Голая (Savitzky-Golay) без использования внешних библиотек в Google Earth Engine, реализованный Гвидо Лемуаном (Guido Lemoine). Код можно взять здесь или здесь.

#GEE
Google Earth Engine (GEE) у нас посвящен раздел в закрепе.
Примеры работы с GEE от разных авторов накапливаются в GEE: проекты/примеры кода.
Река Маккензи

Самая длинная река Канады, Маккензи, словно конвейерная лента переносит к Северному Ледовитому океану осадочные породы и растворенный в воде углерод (1️⃣ cнимок прибора MODIS спутника Terra, 2007 г.). Часть углерода поступает из оттаивающей вечной мерзлоты и торфяников.

2️⃣ Молочно-белые вихри на спутниковом снимке 2017 года — осадочные породы, которые река Маккензи выносит в море Бофорта.

Источник

#снимки #климат
🔊Цикл научно-популярных лекций для студентов 1 курса «Гидроцикл»🔊

💭6 декабря в 19:30 состоится онлайн встреча в рамках цикла научно-популярных лекций для студентов 1 курса «Гидроцикл».

💭Тема встречи: «Глобально-космическая парадигма формирования гидрологического режима водных объектов».
👤Лектор Наталия Вячеславовна Мякишева, профессор кафедры инженерной гидрологии. Наталия Вячеславовна Мякишева, доктор географических наук, занимается вопросами применения вероятностных методов анализа процессов, формирующих гидрологический режим морей, рек и внутренних водоемов, а также разрабатывает подходы многокритериальных оценок и классификации в гидрологии.

Докладчик расскажет о разрабатываемой новой парадигме формирования режима водных объектов, учитывающей электромагнитное взаимодействие Земли, Солнца и планет солнечной системы, а также космоса.

📍Ссылка для участия: https://rshu200.ktalk.ru/vvdst80x2tg3

#РГГМУ #Гидромет #RSHU
Образцы данных радарного спутника "Кондор-ФКА" №1

НЦ ОМЗ опубликовал 12 образцов информационных продуктов уровней обработки 2А1 и 2Б1, созданных на основе шести радарных снимков спутника “Кондор-ФКА” №1.

🔗FTP для скачивания: ftp://ftp2.ntsomz.ru
Логин: Kondor_Demo
Пароль: 6752d0e2b6a32

Спецификации и описание уровней обработки данных КА “Кондор-ФКА” представлены в 📖 “Руководстве пользователя...”.

#SAR #данные
Ubotica и Kongsberg NanoAvionics заключили соглашение о стратегическом партнерстве

Партнерство позволит интегрировать технологию компании Ubotica (Ирландия) по обработке данных на борту спутника, SPACE:AI, в спутниковые платформы, создаваемые NanoAvionics для задач дистанционного зондирования Земли (ДЗЗ).

Ключевым приложением Ubotica SPACE:AI является CogniSAT-CRC (cloud removal and compression — удаление и сжатие облаков), которое автономно удаляет облака с оптических снимков и сжимает данные на орбите, обеспечивая передачу на наземные станции только высококачественных изображений. Это сокращает расходы на передачу данных до 85%.

Обработка данных на борту спутника позволяет предоставлять критически важные данные, полученные спутником ДЗЗ, в режиме, близком к реальному времени. Это необходимо для решения военных задач и в задачах реагирования на чрезвычайные ситуации. Среди заявленных возможностей SPACE:AI — обнаружение судов и мониторинг нефтяных пятен.

Kongsberg NanoAvionics — известный производитель малых спутников. NanoAvionics была создана в Литве. В настоящее время ею владеет норвежская компания Kongsberg.

📸 Спутниковая платформа MP42 компании Kongsberg NanoAvionics (источник)

Источник

#литва #норвегия #ирландия #onboard
Данные ALOS-2 PALSAR-2 ScanSAR Level 2.2

Данные японского спутникового радара PALSAR-2 ScanSAR Level 2.2 находятся в открытом доступе с ноября 2022 года. Тем не менее, доступных данных было довольно мало, и лишь в последнее время в этом деле наметился некоторый прогресс.

РALSAR-2 (Phased Array type L-band Synthetic Aperture Radar-2) — радар L-диапазона (1257,5 МГц), работающий на спутнике ALOS-2. Режим ScanSAR (обзорный) обеспечивает пространственное разрешение 60 м и 100 м для полос обзора 490 км и 350 км соответственно. Режим Stripmap (непрерывный) имеет разрешение 10 м, 6 м и 3 м с полосами обзора 70 км, 70 км и 50 км соответственно. Режим Spotlight (прожекторный) обеспечивает разрешение 1 м x 3 м для участка 25 км x 25 км.

Спутник ALOS-2 находится на солнечно-синхронной орбите с наклонением 97,9° на высоте 628 км с периодом 97 минут. Периодичность данных ALOS-2 составляет 14 суток.

В настоящее время продукты ScanSAR Level 2.2 постепенно выкладываются на платформах:

* JAXA G-Portal
* Google Earth Engine
* Amazon Web Service (AWS)
* NASA Alaska Satellite Facility Data Search (обещают к концу 2024 года)
* Tellus (в будущем)

Доступны данные с августа 2014 года по настоящее время. Данные обновляются ежемесячно. Самые свежие снимки — примерно месячной давности.

Данные PALSAR-2 ScanSAR Level 2.2 представляют собой нормализованные данные обратного рассеяния обзорного режима наблюдения с шириной полосы обзора 350 км. Снимки прошли ортокоррекцию и коррекцию рельефа с использованием цифровой модели поверхности ALOS World 3D (AW3D30).

Данные хранятся в виде 16-битных цифровых чисел (digital numbers, DN). DN можно преобразовать в нормализованное обратное рассеяния в децибелах (γ0) по формуле: γ0 = 10*log10(DN2) - 83,0 дБ

📸 Художественное изображение спутника ALOS-2 (источник)

#данные #SAR #GEE
Покрытие данными ALOS-2 PALSAR-2 ScanSAR Level 2.2

Рассмотрим покрытие данными на примере территории Китая и его окрестностей в 2024 году:

🌍 Код в GEE

Данных пока довольно мало: за 11 месяцев 2024 года набралось 718 снимков. Большая часть территории Китая снята всего 2–3 раза, но есть два исключения. Одно из них — Тайвань, второе предлагаем угадать самостоятельно. Район этот в нынешнем году снимали более 100 раз.

С данными 2021–2023 гг. ситуация примерно такая же, даже немного хуже. Впрочем, раньше не было и этого.

#GEE #SAR
🛰С 29 ноября по 4 декабря 2024 г. были проведены первые включения приборов комплекса целевой аппаратуры (КЦА) на спутнике «Ионосфера-М» №1. Проверки показали, что все приборы, как для измерения параметров плазмы, так и для измерения параметров электромагнитного поля, благополучно пережили процесс выведения и работают нормально.

На рисунке — пример регистрации электромагнитного излучения прибором ЛАЭРТ на спутнике «Ионосфера-М» №1 во время первых включений научной аппаратуры. На динамической спектрограмме по вертикали отложена частота от 0.1 до 6 МГц, по горизонтали — время и координаты спутника, цветом отображена интенсивность излучения.

🌍 В настоящее время ведется построение рабочей конфигурации спутников «Ионосфера-М» №1 и №2 . Используя бортовые двигательные установки, они перемещаются вдоль круговой орбиты с тем, чтобы занять рабочее положение в точках, разнесенных на 180 градусов по широте. Начало работы по основной научной программе запланировано на начало 2025 г.

▶️ Новость на сайте ИКИ РАН
Моделирование потока разреженного газа в воздухозаборнике спутника на сверхнизкой околоземной орбите

Коллектив ученых из МГУ провел моделирование течения разреженного газа внутри воздухозаборника космического аппарата на сверхнизкой околоземной орбите (высотой 120–150 км). Основная задача воздухозаборника — захватить часть набегающего потока и привести этот газ в состояние, пригодное для подачи в ионизационную камеру двигателя. Удалось установить зависимость компрессии газа в воздухозаборнике от геометрических параметров воздухозаборника, ориентации аппарата относительно набегающего потока и свойств материалов поверхности.

Исследования связаны с решением амбициозной задачи освоения сверхнизких орбит Земли, которая решается совместными усилиями физического факультета, механико-математического факультета и факультета космических исследований рамках Научно-образовательной школы МГУ “Фундаментальные и прикладные исследования космоса”. На сверхнизких орбитах космический аппарат испытывает заметное аэродинамическое сопротивление. Чтобы его компенсировать, требуется обеспечить двигатель необходимым количеством рабочего тела, то есть газом, который ионизируется, разгоняется и выбрасывается с огромной скоростью через сопло двигателя, создавая тягу.

“Мы рассмотрели вариант, когда рабочее тело для двигателя собирается прямо из набегающего потока. Для этого аппарат оснащается воздухозаборником, основная задача которого состоит в обеспечении необходимого потока и плотности газа в ионизационной камере двигателя. Мы указали на существующие в литературе принципиальные ошибки при моделировании таких течений, а также показали некорректность рассмотрения воздухозаборника в отрыве от следующих за ним элементов внутреннего тракта аппарата”, — рассказал Артем Якунчиков, доцент кафедры инженерной механики и прикладной математики механико-математического факультета МГУ.

Аэродинамическая задача решалась с помощью метода событийного молекулярно-динамического моделирования в трехмерной постановке. Набегающий поток описывался миллионами молекул, параметры которых соответствовали параметрам атмосферы на изучаемой высоте (140 км). Молекулы взаимодействовали с элементами конструкции аппарата, а также между собой. В результате такого моделирования были получены поля всех термодинамических параметров внутри воздухозаборника и в области предполагаемой ионизации, а также силы и тепловые потоки ко всем поверхностям. Это позволило сделать несколько практически значимых выводов о геометрических параметрах воздухозаборника, влиянии закона рассеяния молекул на поверхностях аппарата и угла атаки на компрессию и расход газа в таких системах.

Источник

📖 Yakunchikov, A., Kosyanchuk, V., Filatyev, A., & Golikov, A. (2025). Simulation of rarefied gas flow inside the satellite air intake in ultra-low Earth orbit. Acta Astronautica, 226, 102–112. https://doi.org/10.1016/j.actaastro.2024.11.041

#VLEO
Открытые данные дистанционного зондирования для выявления археологических объектов

С помощью современных спутниковых данных можно находить признаки наличия скрытых сооружений или поселений, которые проявляются в изменении характера растительных условий и даже ландшафта, что позволяет значительно сузить радиус поиска археологических объектов. В работе (Данилов и др., 2024) рассмотрены возможности использования открытых данных дистанционного зондирования для выявления археологических объектов. Показано как применять спутниковые снимки (Landsat, Sentinel-2) и цифровые модели рельефа (SRTM, Copernicus и др.) для обнаружения и идентификации археологических объектов. Наиболее качественные результаты на предполевом этапе исследований получаются при комбинировании различных типов данных дистанционного зондирования и ГИС-моделирования.

📖 Данилов В. А., Морозова В. А., Федоров А. В., Шлапак П. А. Открытые данные дистанционного зондирования для выявления археологических объектов // Известия Саратовского университета. Новая серия. Серия: Науки о Земле. 2024. Т. 24, вып. 3. С. 150-158. https://doi.org/10.18500/1819-7663-2024-24-3-150-158

#археология
В 2025 году доступ к данным ДЗЗ из федерального фонда будет безвозмездным

Данные дистанционного зондирования Земли (ДЗЗ), содержащиеся в федеральном фонде данных ДЗЗ, будут предоставляться бесплатно органам власти, госкорпорациям, а также компаниям и частным лицам, исполняющим государственные контракты в период с 1 января по 31 декабря 2025 года. Соответствующее постановление правительства России опубликовано на официальном портале правовой информации.

Действие постановления распространяется на данные ДЗЗ, копии данных ДЗЗ, а также на продукты, созданные на их основе.

#россия
Новостные агентства, ссылаясь на генерального директора Роскосмоса Юрия Борисова, сообщают о предстоящем в конце нынешнего года подписании форвардного контракта между Роскосмосом и частной космической компанией Sitronics Space на поставку данных ДЗЗ.

#россия
GHGSat планирует расширить свою группировку до 21 спутника к 2027 году

Компания GHGSat объявила о запуске девяти новых спутников к концу 2026 года, что увеличит группировку спутников для мониторинга выбросов метана с первоначальных 12 до 21. Дополнительные спутники позволят GHGSat чаще посещать промышленные объекты, обнаруживая и измеряя выбросы метана с периодичностью около суток.

Источник

#CH4
Вышел пятый номер журнала “Геопрофи” в 2024 году

Журнал “Геопрофи” № 5, 2024 (131) доступен на сайте (PDF).

В этом номере:

👨🏻‍💻 ОТ РЕДАКЦИИ
* Нейронные сети и искусственный интеллект в геодезии, картографии и геоинформатике

📖 ТЕХНОЛОГИИ
* Итоги конференции «ЦИФРОВАЯ РЕАЛЬНОСТЬ: космические и пространственные данные, технологии обработки»
* Компания «Ракурс» — победитель Международного конкурса BRICS Solutions Awards

🎓 ОБРАЗОВАНИЕ
* ГЕОСКАН. Первое учебное пособие по БАС для школьников, созданное при участии индустриального партнера — ГК «Геоскан»
* Лузин Е.В. О практической подготовке студентов на рубеже 105-летия МКГиК

👨🏻‍💻 ТЕХНОЛОГИИ
* Воронов А.Н., Лубнин А.П. Решения компании «ГНСС плюс» для спутникового позиционирования в условиях помех
* Орлов М.Ю. Анализ выпуска картографической продукции в России
* ГЕОСКАН. Современная геодезия: БАС Геоскана помогают создавать топографические карты месторождений
* ГЕОСКАН.Безопасная эксплуатация карьеров: АФС с Геоскана Gemini

⚖️ НОРМЫ И ПРАВО
* Горбунов О.Н., Дроздов А.О. Классное и разрядное геометрическое нивелирование

📜 ПУТЕШЕСТВИЕ В ИСТОРИЮ
* Барков Р.Р. Историческая реконструкция топографической съемки XIX века. Французский план Бородинского поля 1812 года

#журнал
This media is not supported in your browser
VIEW IN TELEGRAM
GEE-46. Категоризация NDVI

Допустим, нам нужно разделить значения NDVI на несколько категорий или классов. Пусть, для определенности, категорий будет пять: 1 – [-1; 0.2), 2 – [0.2; 0.4), 3 – [0.4; 0.6), 4 – [0.6; 0.8), 5 – [0.8; 1].

Создадим изображение, состоящее из 5 слоев. Значение каждого слоя равно верхнему порогу категории: 0.2, 0.4, 0.6, 0.8, 1.

var thresholds = [0.2, 0.4, 0.6, 0.8, 1];
var image = ee.Image(thresholds);


Выполним проверку условия ndvi.lt(image) и получим на выходе изображение из пяти бинарных слоев. Каждый слой будет равен 0 или 1, в зависимости от того, выполнено ли условие — попало ли значение NDVI в ту или иную категорию.

Номер категории будет равен сумме единиц

var zones = ndvi.lt(image).reduce('sum');


Но при этом нумерация категорий будет идти сверху вниз: 1 – [0.8; 1], 2 – [0.6; 0.8), …

Перевернем ее, вычитая номер категории из числа категорий

var zones = ee.Image(thresholds.length + 1).subtract(ndvi.lt(image).reduce('sum')).rename('zone');


В конце мы переименовали полученный слой в zone.

Рассмотренный прием подойдет для категоризации любого однослойного изображения, а не только NDVI.

🌍 Код примера

В GEE есть и другие способы категоризации изображений — при помощи CART и where.

#GEE