Категоризация значений: classify
Например, можно разделить значения нормализованного разностного вегетационного индекса (NDVI) 1️⃣ по величине на несколько групп 2️⃣:
Начнём с конца. На вход функции
В матрице указывают границы диапазонов значений и номера классов, в которые эти диапазоны преобразуются. У нас таких классов пять. Чем больше номер класса, тем выше в нём значения NDVI.
Матрица
По умолчанию, левая граница диапазона не включается в класс, но это можно изменить, задав аргумент
Если есть пересекающиеся диапазоны, то значение будущего класса определяет первый из них.
#R
classify
разделяет значения растровых данных на категории (классы), то есть заменяет диапазон значений на новое значение.Например, можно разделить значения нормализованного разностного вегетационного индекса (NDVI) 1️⃣ по величине на несколько групп 2️⃣:
m <- c(-Inf,0.25, 1,
0.25, 0.3, 2,
0.3, 0.4, 3,
0.4, 0.5, 4,
0.5, Inf, 5)
rcl <- matrix(m, ncol=3, byrow=TRUE)
ndvi_cl <- classify(ndvi, rcl)
Начнём с конца. На вход функции
classify
подаётся исходная карта ndvi
и матрица переклассификации (reclassification) rcl
.В матрице указывают границы диапазонов значений и номера классов, в которые эти диапазоны преобразуются. У нас таких классов пять. Чем больше номер класса, тем выше в нём значения NDVI.
Матрица
rcl
формируется на основе вектора m
, состоящего из троек значений: нижняя граница диапазона, верхняя граница диапазона и номер класса. Классу 1 соответствует диапазон значений (-∞, 0.25], классу 2 — диапазон (0.25, 0.3] и т. д.По умолчанию, левая граница диапазона не включается в класс, но это можно изменить, задав аргумент
include.lowest=TRUE
.Если есть пересекающиеся диапазоны, то значение будущего класса определяет первый из них.
#R
Forwarded from GEOPROFI
Журнал «Геопрофи» № 2-2024 (128) доступен на сайте – https://www.geoprofi.ru/issues/7063
В этом номере, посвященном 245-летию МИИГАиК, публикуются статьи выпускников МИИГАиК разных лет (год окончания вуза указан в скобках после наименования организации):
✅ 245 лет Московскому государственному университету геодезии и картографии, автор Грошев В.В. («Геопрофи», 1971 г.)
✅ О роли среднего профессионального картографо-геодезического образования в России, авторы Хинкис Г.Л. (МИИГАиК, 1968 г.), Зайченко В.Л. (1967 г.)
✅ Итоги комплексной экспедиции студентов МИИГАиК в Чеченскую Республику, авторы Скрыпицына Т.Н. (МИИГАиК, 1996 г.), Воротилов А.Г. («Геоскан», 2022 г.), Кочнева Д.А. («Горный Аудит», 2023 г.), Смирнов Е.А. (МИИГАиК, 2023 г.)
✅ Точность ортомозаики по космическим снимкам высокого разрешения, авторы Заичко В.А. (ГК «Роскосмос»), Кутумов А.А. (ГК «Роскосмос», 2014 г.), Боровенский Е.Н. (НИИ ТП), Сысенко Д.В. (НИИ ТП), Ядыкин А.В. (НИИ ТП), Федоткин Д.И. (НИИ ТП)
✅ ГНСС-приемники SinoGNSS MARS и SinoGNSS T20 («ГЕОСТРОЙИЗЫСКАНИЯ»)
✅ Итоги конференции «Технологии Геоскана 2024» (ГК «Геоскан»)
✅ О защите и сохранении исторического наследия отечественной геодезии, автор Барков Р.Р. (Санкт-Петербургская ассоциация геодезии и картографии, 1995 г.)
✅ Профессионалы своего дела – о выпускниках МИИГАиК 1963 г. и 1973 г., автор Грачева Н.В.
На обложке этого номера журнал представлены фото фасадов зданий Константиновского межевого института: 1870 г. (на Старой Басманной) и 1876 г. (в Гороховском переулке), а также современный вид фасада старого корпуса МИИГАиК. Подложкой служит фрагмент факсимильного издания 2002 г. «Нивеллирный план города Москвы», составленного в 1879 г.
В этом номере, посвященном 245-летию МИИГАиК, публикуются статьи выпускников МИИГАиК разных лет (год окончания вуза указан в скобках после наименования организации):
✅ 245 лет Московскому государственному университету геодезии и картографии, автор Грошев В.В. («Геопрофи», 1971 г.)
✅ О роли среднего профессионального картографо-геодезического образования в России, авторы Хинкис Г.Л. (МИИГАиК, 1968 г.), Зайченко В.Л. (1967 г.)
✅ Итоги комплексной экспедиции студентов МИИГАиК в Чеченскую Республику, авторы Скрыпицына Т.Н. (МИИГАиК, 1996 г.), Воротилов А.Г. («Геоскан», 2022 г.), Кочнева Д.А. («Горный Аудит», 2023 г.), Смирнов Е.А. (МИИГАиК, 2023 г.)
✅ Точность ортомозаики по космическим снимкам высокого разрешения, авторы Заичко В.А. (ГК «Роскосмос»), Кутумов А.А. (ГК «Роскосмос», 2014 г.), Боровенский Е.Н. (НИИ ТП), Сысенко Д.В. (НИИ ТП), Ядыкин А.В. (НИИ ТП), Федоткин Д.И. (НИИ ТП)
✅ ГНСС-приемники SinoGNSS MARS и SinoGNSS T20 («ГЕОСТРОЙИЗЫСКАНИЯ»)
✅ Итоги конференции «Технологии Геоскана 2024» (ГК «Геоскан»)
✅ О защите и сохранении исторического наследия отечественной геодезии, автор Барков Р.Р. (Санкт-Петербургская ассоциация геодезии и картографии, 1995 г.)
✅ Профессионалы своего дела – о выпускниках МИИГАиК 1963 г. и 1973 г., автор Грачева Н.В.
На обложке этого номера журнал представлены фото фасадов зданий Константиновского межевого института: 1870 г. (на Старой Басманной) и 1876 г. (в Гороховском переулке), а также современный вид фасада старого корпуса МИИГАиК. Подложкой служит фрагмент факсимильного издания 2002 г. «Нивеллирный план города Москвы», составленного в 1879 г.
Начало пожароопасного сезона в Британской Колумбии
После прошлогодних рекордных лесных пожаров, в Канаде начался новый пожароопасный сезон. Хотя широкомасштабная активность лесных пожаров в Британской Колумбии обычно начинается не раньше середины июня, в этом году пожары возникли уже в середине мая.
На снимке, сделанном прибором MODIS спутника Aqua (11 мая 2024 года), видно как дым, поднимающийся от нескольких пожаров в районе города Форт-Нельсон (Британская Колумбия), устремляется на восток в провинцию Альберта.
К северу от Форт-Нельсона возникло ещё несколько крупных пожаров площадью в десятки тысяч гектаров каждый. Согласно данным Службы лесных пожаров Британской Колумбии, несколько из этих пожаров были отнесены к категории “остаточных”. Вероятно, они тлели под снегом всю зиму, прежде чем вспыхнуть вновь.
▶️ Посмотреть за развитием пожаров в районе Форт-Нельсон, начиная с 10 мая
#снимки #пожары
После прошлогодних рекордных лесных пожаров, в Канаде начался новый пожароопасный сезон. Хотя широкомасштабная активность лесных пожаров в Британской Колумбии обычно начинается не раньше середины июня, в этом году пожары возникли уже в середине мая.
На снимке, сделанном прибором MODIS спутника Aqua (11 мая 2024 года), видно как дым, поднимающийся от нескольких пожаров в районе города Форт-Нельсон (Британская Колумбия), устремляется на восток в провинцию Альберта.
К северу от Форт-Нельсона возникло ещё несколько крупных пожаров площадью в десятки тысяч гектаров каждый. Согласно данным Службы лесных пожаров Британской Колумбии, несколько из этих пожаров были отнесены к категории “остаточных”. Вероятно, они тлели под снегом всю зиму, прежде чем вспыхнуть вновь.
▶️ Посмотреть за развитием пожаров в районе Форт-Нельсон, начиная с 10 мая
#снимки #пожары
📖 Шихов А.Н., Абдуллин Р.К. Фонд космических снимков для создания карт. Пермь: Пермский государственный национальный исследовательский университет, 2024. — 115 с. [PDF]
Фонд космических снимков — это виртуальное объединение всех данных, полученных методами дистанционного зондирования Земли из космоса.
Книга содержит систематизированную информацию о современном состоянии мирового фонда космических снимков. Она позволяет обоснованно подойти к выбору источников данных для решения той или иной задачи (в частности, сократить временные затраты, используя готовые тематические продукты вместо “сырых” данных) и получить представление о результатах исследований ведущих мировых научных центров в области обработки и анализа спутниковых данных.
Рассматривается история развития и современное состояние мирового фонда спутниковых снимков в различных спектральных диапазонах, современные тенденции развития фонда снимков и рынка данных дистанционного зондирования Земли из Космоса, основные области применения данных, полученных различными съемочными системами; тематические продукты, созданные на основе спутниковых данных для глобального картографирования природных ресурсов и их многолетней динамики, а также глобальные цифровые модели рельефа, созданные по спутниковым данным.
#основы
Фонд космических снимков — это виртуальное объединение всех данных, полученных методами дистанционного зондирования Земли из космоса.
Книга содержит систематизированную информацию о современном состоянии мирового фонда космических снимков. Она позволяет обоснованно подойти к выбору источников данных для решения той или иной задачи (в частности, сократить временные затраты, используя готовые тематические продукты вместо “сырых” данных) и получить представление о результатах исследований ведущих мировых научных центров в области обработки и анализа спутниковых данных.
Рассматривается история развития и современное состояние мирового фонда спутниковых снимков в различных спектральных диапазонах, современные тенденции развития фонда снимков и рынка данных дистанционного зондирования Земли из Космоса, основные области применения данных, полученных различными съемочными системами; тематические продукты, созданные на основе спутниковых данных для глобального картографирования природных ресурсов и их многолетней динамики, а также глобальные цифровые модели рельефа, созданные по спутниковым данным.
#основы
Британская компания SatVu договорилась о запуске своего второго и третьего космических аппаратов [ссылка].
SpaceX должен запустить HotSat-2 в первой половине 2025 года, а HotSat-3 — во второй половине.
Оба космических аппарата созданы компанией Surrey Satellite Technology Ltd. (SSTL), и будут аналогичны демонстрационному спутнику HotSat-1 массой 160 килограммов, который был выведен на орбиту в июне 2023 года и вышел из строя через шесть месяцев после запуска.
До выхода их строя, HotSat-1 успешно обслуживал клиентов, таких как Japan Space Imaging Corporation — поставщик геопространственной информации для гражданского, коммерческого, оборонного и разведывательного рынков.
HotSat-1 вёл съёмку в средневолновом инфракрасном диапазоне (3400–5000 нм) с пространственным разрешением 3.5 метра. Съемочная аппаратура спутника позволяла записывать видео длительностью до 60 с (при 25 кадрах/c).
📸 Солнечная электростанция в Техасе (США) на снимке HotSat-1.
#UK #LST
SpaceX должен запустить HotSat-2 в первой половине 2025 года, а HotSat-3 — во второй половине.
Оба космических аппарата созданы компанией Surrey Satellite Technology Ltd. (SSTL), и будут аналогичны демонстрационному спутнику HotSat-1 массой 160 килограммов, который был выведен на орбиту в июне 2023 года и вышел из строя через шесть месяцев после запуска.
До выхода их строя, HotSat-1 успешно обслуживал клиентов, таких как Japan Space Imaging Corporation — поставщик геопространственной информации для гражданского, коммерческого, оборонного и разведывательного рынков.
HotSat-1 вёл съёмку в средневолновом инфракрасном диапазоне (3400–5000 нм) с пространственным разрешением 3.5 метра. Съемочная аппаратура спутника позволяла записывать видео длительностью до 60 с (при 25 кадрах/c).
📸 Солнечная электростанция в Техасе (США) на снимке HotSat-1.
#UK #LST
Солнечно-индуцированная флуоресценция хлорофилла для заблаговременного предупреждения о засухах
Внезапные засухи (flash drought) характеризуются быстрым высыханием почвы, могут продолжаться в течение нескольких недель и их трудно предсказать. (Parazoo et al., 2024) смогли обнаружить признаки внезапной засухи примерно за три месяца до её начала. В будущем такое заблаговременное предупреждение поможет в борьбе с последствиями засух.
Состояние растительности оценивали по данным солнечно-индуцированной флуоресценции хлорофилла, то есть свечения хлорофилла в ближнем инфракрасном диапазоне, которое сопровождает процесс фотосинтеза. Для этого использовали измерения спутника OCO-2 (Orbiting Carbon Obsevatory-2) и данные GOSIF. Для оценки влажности почвы использовались данные спутника SMAP.
Исследователи сравнили многолетние данные о флуоресценции с данными о вспышках засухи, которые происходили в США в период с мая по июль с 2015 по 2020 год. Они обнаружили эффект домино: в течение недель и месяцев, предшествующих внезапной засухе, растительность бурно росла в тёплых и сухих условиях. При этом растения излучали необычно сильный для этого времени года флуоресцентный сигнал. Параллельно они постепенно истощали запасы воды в почве, так что когда наступили экстремальные высокие температуры, и без того низкий уровень почвенной влаги резко упал и в течение нескольких дней развилась внезапная засуха.
Оказалось, что аномально сильная флуоресценция очень хорошо коррелирует с потерями влаги в почве в течение шести-двенадцати недель перед внезапной засухой. Последовательная картина проявилась в различных ландшафтах на территории США.
Растения, испытывающие тепловой стресс, поглощают меньше углекислого газа из атмосферы, поэтому исследователи ожидали обнаружить больше свободного углерода. Вместо этого они обнаружили баланс.
Тёплая погода предшествовавшая наступлению внезапной засухи, побуждала растения увеличить поглощение углерода по сравнению с обычными условиями. Этого аномального поглощения было, в среднем, достаточно, чтобы полностью компенсировать снижение поглощения углерода после наступления засухи.
Популярное изложение статьи на Phys.org
#SIF #засуха
Внезапные засухи (flash drought) характеризуются быстрым высыханием почвы, могут продолжаться в течение нескольких недель и их трудно предсказать. (Parazoo et al., 2024) смогли обнаружить признаки внезапной засухи примерно за три месяца до её начала. В будущем такое заблаговременное предупреждение поможет в борьбе с последствиями засух.
Состояние растительности оценивали по данным солнечно-индуцированной флуоресценции хлорофилла, то есть свечения хлорофилла в ближнем инфракрасном диапазоне, которое сопровождает процесс фотосинтеза. Для этого использовали измерения спутника OCO-2 (Orbiting Carbon Obsevatory-2) и данные GOSIF. Для оценки влажности почвы использовались данные спутника SMAP.
Исследователи сравнили многолетние данные о флуоресценции с данными о вспышках засухи, которые происходили в США в период с мая по июль с 2015 по 2020 год. Они обнаружили эффект домино: в течение недель и месяцев, предшествующих внезапной засухе, растительность бурно росла в тёплых и сухих условиях. При этом растения излучали необычно сильный для этого времени года флуоресцентный сигнал. Параллельно они постепенно истощали запасы воды в почве, так что когда наступили экстремальные высокие температуры, и без того низкий уровень почвенной влаги резко упал и в течение нескольких дней развилась внезапная засуха.
Оказалось, что аномально сильная флуоресценция очень хорошо коррелирует с потерями влаги в почве в течение шести-двенадцати недель перед внезапной засухой. Последовательная картина проявилась в различных ландшафтах на территории США.
Растения, испытывающие тепловой стресс, поглощают меньше углекислого газа из атмосферы, поэтому исследователи ожидали обнаружить больше свободного углерода. Вместо этого они обнаружили баланс.
Тёплая погода предшествовавшая наступлению внезапной засухи, побуждала растения увеличить поглощение углерода по сравнению с обычными условиями. Этого аномального поглощения было, в среднем, достаточно, чтобы полностью компенсировать снижение поглощения углерода после наступления засухи.
Популярное изложение статьи на Phys.org
#SIF #засуха
AGU Journals
Antecedent Conditions Mitigate Carbon Loss During Flash Drought Events
<em>Geophysical Research Letters</em> is an AGU journal publishing high-impact, innovative articles on major advances spanning all of the major geoscience disciplines.
This media is not supported in your browser
VIEW IN TELEGRAM
📹 Растения излучают свет, который может быть обнаружен спутниками ДЗЗ. Серым цветом отмечены регионы Северной Америки с низкой или нулевой флуоресценцией, красным, розовым и белым — регионы с высокой флуоресценцией (источник).
This media is not supported in your browser
VIEW IN TELEGRAM
SpatRasterDataset и SpatRasterCollection
До сих пор мы работали с объектами класса
Из объектов
#R
До сих пор мы работали с объектами класса
SpatRaster
. SpatRaster
представляет собой прямоугольную часть мира, разделённую на прямоугольные ячейки одинаковой площади (в единицах заданной системы координат). Для каждой ячейки может быть несколько значений (“слоёв”).SpatRaster
может указывать на один или несколько файлов на диске, в которых хранятся значения ячеек, и/или хранить эти значения в памяти. Эти объекты могут быть созданы с помощью метода rast
.Из объектов
SpatRaster
можно создавать новые объекты того же класса, а кроме них — SpatRasterDataset
и SpatRasterCollection
.SpatRasterDataset
— это набор данных, каждый элемент которого представляет собой SpatRaster
для одной и той же области пространства (охвата) и системы координат, но, возможно, с разным разрешением. Элементы `SpatRasterDataset`используются для хранения отдельных переменных (например, температуры и осадков) или придания четвёртого измерения (например, высоты, глубины или времени) данным, которые уже имеют три измерения (несколько слоёв).SpatRasterCollection
— это коллекция (список) объектов SpatRaster
без ограничений по протяженности или другим геометрическим параметрам. Коллекции применяют для хранения нескольких объектов SpatRaster
, чтобы затем объединить их (merge
) или создать из них мозаику (mosaic
).SpatRasterDataset
создаётся функцией (методом) sds
:r <- rast(system.file("ex/logo.tif", package="terra"))
x <- sds(r, r/2)
names(r) <- c("first", "second")
r
# Узнаем длину SpatRasterDataset
length(x)
# Извлечём 2-й SpatRaster
x[2]
SpatRasterCollection
создаётся функцией sprc
:x <- rast(xmin=-110, xmax=-50, ymin=40, ymax=70, ncols=60, nrows=30)
y <- rast(xmin=-80, xmax=-20, ymax=60, ymin=30)
res(y) <- res(x)
values(x) <- 1:ncell(x)
values(y) <- 1:ncell(y)
z <- sprc(x, y)
z
z[1]
#R
Forwarded from SPUTNIX
Отправили на орбиту очередную партию спутников!🚀
Сегодня на орбиту была запущена новая партия гражданских космических аппаратов производства частной российской компании «СПУТНИКС» (дочерняя компания «СИТРОНИКС СПЕЙС»).
Со всех спутников получена телеметрия, КА взяты на управление Центром управления полетами компании.
Среди запущенных спутников:
🛰 2 космических аппарата дистанционного зондирования Земли (ДЗЗ) «Зоркий-2М»
🛰 4 спутника автоматической идентификационной системы (АИС) SITRO-AIS для трекинга морских судов.
Космические аппараты были созданы на базе технологии CubeSat и войдут в космические системы ДЗЗ и АИС компании «СИТРОНИКС СПЕЙС»🪐
Основная полезная нагрузка двух космических аппаратов (КА) «Зоркий-2М» - мультиспектральная камера, позволяющая получать изображения земной поверхности в четырех спектральных диапазонах (красный, зеленый, синий, ближний ИК) с разрешением от 2,5 до 2,8 метров на пиксель в зависимости от высоты орбиты и полосой захвата до 14 км.
КА «Зоркий-2М» собран в форм-факторе 12-юнитового CubeSat с габаритами 20х20х30 см и массой всего лишь 18кг!
На орбите уже работают два спутника «Зоркий-2М», еще два новых спутника увеличат возможности российской орбитальной группировки ДЗЗ.
Другие запущенные спутники АИС представляют собой 3-юнитовые CubeSat, оснащённые аппаратурой для приема и передачи сигналов системы автоматической идентификации с морских судов на наземные станции для контроля и обеспечения безопасности мореплавания, в том числе по Северному морскому пути.
В настоящее время в группировке SITRO-AIS вместе с запущенными спутниками уже работают 28 специализированных КА, кроме того, приемной аппаратурой АИС оснащены и все спутники «Зоркий-2М».
В 2023 году мы изготовили 100 спутников!
Разрабатываем спутники для российских и иностранных заказчиков, кроме этого создаем аппараты для развития науки и образования, наземное испытательное оборудование и учебные комплексы для космического образования👋
Ждем новых запусков🚀
Сегодня на орбиту была запущена новая партия гражданских космических аппаратов производства частной российской компании «СПУТНИКС» (дочерняя компания «СИТРОНИКС СПЕЙС»).
Со всех спутников получена телеметрия, КА взяты на управление Центром управления полетами компании.
Среди запущенных спутников:
Космические аппараты были созданы на базе технологии CubeSat и войдут в космические системы ДЗЗ и АИС компании «СИТРОНИКС СПЕЙС»
Основная полезная нагрузка двух космических аппаратов (КА) «Зоркий-2М» - мультиспектральная камера, позволяющая получать изображения земной поверхности в четырех спектральных диапазонах (красный, зеленый, синий, ближний ИК) с разрешением от 2,5 до 2,8 метров на пиксель в зависимости от высоты орбиты и полосой захвата до 14 км.
КА «Зоркий-2М» собран в форм-факторе 12-юнитового CubeSat с габаритами 20х20х30 см и массой всего лишь 18кг!
На орбите уже работают два спутника «Зоркий-2М», еще два новых спутника увеличат возможности российской орбитальной группировки ДЗЗ.
Другие запущенные спутники АИС представляют собой 3-юнитовые CubeSat, оснащённые аппаратурой для приема и передачи сигналов системы автоматической идентификации с морских судов на наземные станции для контроля и обеспечения безопасности мореплавания, в том числе по Северному морскому пути.
В настоящее время в группировке SITRO-AIS вместе с запущенными спутниками уже работают 28 специализированных КА, кроме того, приемной аппаратурой АИС оснащены и все спутники «Зоркий-2М».
В 2023 году мы изготовили 100 спутников!
Разрабатываем спутники для российских и иностранных заказчиков, кроме этого создаем аппараты для развития науки и образования, наземное испытательное оборудование и учебные комплексы для космического образования
Ждем новых запусков
Please open Telegram to view this post
VIEW IN TELEGRAM
Tomorrow.io заключила контракт с Министерством обороны США на создание двух малых метеорологических спутников [ссылка]
Компания Tomorrow.io из Бостона (шт. Массачусетс, США) заключила контракт с Министерством обороны США на 10,2 млн долларов на производство и запуск двух спутников, оснащённых микроволновыми радиометрами для обеспечения метеоданными американских военных. Известно, что полезная нагрузка должна быть изготовлена к маю 2025 года.
Год назад компания была выбрана для получения финансирования в рамках программы Accelerate the Procurement and Fielding of Innovative Technologies (APFIT) — инициативы Пентагона, направленной на инвестирование в малые предприятия и стартапы с перспективными технологиями. К тому времени Tomorrow.io уже получила от Министерства обороны США контракты на общую сумму более 30 млн долларов.
Tomorrow.io создаёт группировку малых коммерческих метеорологических спутников, оснащенных радарами и микроволновыми радиометрами. В 2023 году на орбиту были выведены космические аппараты Tomorrow R1 и R2, оснащённые радарами Ka-диапазона. Компания планирует запустить восемь спутников с микроволновыми радиометрами в 2024 году и иметь 18 подобных спутников на орбите к концу 2025 года.
📸 Источник
#война #погода #США
Компания Tomorrow.io из Бостона (шт. Массачусетс, США) заключила контракт с Министерством обороны США на 10,2 млн долларов на производство и запуск двух спутников, оснащённых микроволновыми радиометрами для обеспечения метеоданными американских военных. Известно, что полезная нагрузка должна быть изготовлена к маю 2025 года.
Год назад компания была выбрана для получения финансирования в рамках программы Accelerate the Procurement and Fielding of Innovative Technologies (APFIT) — инициативы Пентагона, направленной на инвестирование в малые предприятия и стартапы с перспективными технологиями. К тому времени Tomorrow.io уже получила от Министерства обороны США контракты на общую сумму более 30 млн долларов.
Tomorrow.io создаёт группировку малых коммерческих метеорологических спутников, оснащенных радарами и микроволновыми радиометрами. В 2023 году на орбиту были выведены космические аппараты Tomorrow R1 и R2, оснащённые радарами Ka-диапазона. Компания планирует запустить восемь спутников с микроволновыми радиометрами в 2024 году и иметь 18 подобных спутников на орбите к концу 2025 года.
📸 Источник
#война #погода #США
Компания Marble Imaging планирует создать группировку спутников наблюдения Земли сверхвысокого разрешения [ссылка]
Немецкая компания Marble Imaging планирует создать группировку из 200 малых спутников дистанционного зондирования Земли (ДЗЗ). Демонстрационный спутник будет построен для Marble Imaging ещё одной немецкой компанией — Reflex Aerospace. Финансирование будет осуществляться через Немецкое космическое агентство DLR, так как Marble Imaging выиграла конкурс на лучший малый спутник с полезной нагрузкой — Kleinsatelliten Nutzlastwettbewerb.
По словам представителей Marble Imaging, создавая в партнерстве с Reflex первую в Европе спутниковую группировку ДЗЗ сверхвысокого разрешения, компания бросает вызов рынку, на котором доминируют США, и укрепляет независимость Европы в поставках данных ДЗЗ сверхвысокого разрешения.
Согласно пресс-релизу, полезная нагрузка для первого спутника разрабатывается совместно с ключевым партнером Marble Imaging, польской компанией Scanway, которая поставляет передовые оптические приборы для космического применения. Камера Scanway способна делать снимки с пространственным разрешением 0,8 м в видимом и ближнем инфракрасном диапазонах спектра, а также содержит панхроматический диапазон. Спутники будущей группировки будут оснащены такими же камерами, а также будут вести съёмку в коротковолновом инфракрасном диапазоне (SWIR). Планируемое решение с двумя камерами направлено на максимальное взаимодействие с европейской программой Copernicus.
Компания Marble Imaging основана в августе 2023 года. Штаб-квартира находится в Бремене (Германия).
📸 Руководители Marble Imaging и Reflex Aerospace на церемонии награждения победителей конкурса DLR Kleinsatelliten Nutzlastwettbewerb
#германия
Немецкая компания Marble Imaging планирует создать группировку из 200 малых спутников дистанционного зондирования Земли (ДЗЗ). Демонстрационный спутник будет построен для Marble Imaging ещё одной немецкой компанией — Reflex Aerospace. Финансирование будет осуществляться через Немецкое космическое агентство DLR, так как Marble Imaging выиграла конкурс на лучший малый спутник с полезной нагрузкой — Kleinsatelliten Nutzlastwettbewerb.
По словам представителей Marble Imaging, создавая в партнерстве с Reflex первую в Европе спутниковую группировку ДЗЗ сверхвысокого разрешения, компания бросает вызов рынку, на котором доминируют США, и укрепляет независимость Европы в поставках данных ДЗЗ сверхвысокого разрешения.
Согласно пресс-релизу, полезная нагрузка для первого спутника разрабатывается совместно с ключевым партнером Marble Imaging, польской компанией Scanway, которая поставляет передовые оптические приборы для космического применения. Камера Scanway способна делать снимки с пространственным разрешением 0,8 м в видимом и ближнем инфракрасном диапазонах спектра, а также содержит панхроматический диапазон. Спутники будущей группировки будут оснащены такими же камерами, а также будут вести съёмку в коротковолновом инфракрасном диапазоне (SWIR). Планируемое решение с двумя камерами направлено на максимальное взаимодействие с европейской программой Copernicus.
Компания Marble Imaging основана в августе 2023 года. Штаб-квартира находится в Бремене (Германия).
📸 Руководители Marble Imaging и Reflex Aerospace на церемонии награждения победителей конкурса DLR Kleinsatelliten Nutzlastwettbewerb
#германия
Вода, вода, кругом вода…
1️⃣ В апреле 2024 года проливные дожди привели к сильным наводнениям в странах восточной Африки — Танзании, Кении и Сомали. На снимке спутника Landsat 9 от 29 апреля 2024 года —наводнение в бассейне реки Руфиджи (Танзания).
2️⃣ Снимок затопленного центра города Порту-Алегри — столицы бразильского штата Риу-Гранди-ду-Сул — сделан 8 мая 2024 года спутником Landsat 8. Паводковые воды затопили исторические кварталы, привели к закрытию международного аэропорта, захлестнули стадионы и сделали непроходимыми несколько шоссе.
3️⃣ На снимке спутника “Канопус-В” (10 мая 2024 года) — паводковая обстановка в Омской области. В ночь с 7 на 8 мая в Усть-Ишимском районе из-за поднявшегося уровня воды в реке Иртыш прорвалась насыпная дамба. В зоне затопления оказались населённые пункты Ашеваны, Колпаково, Малая Игиза, Тюрметяки, Эбаргуль, Атеринки, Большая Тебендя, Слободчики, Усть-Ишим.
#снимки
1️⃣ В апреле 2024 года проливные дожди привели к сильным наводнениям в странах восточной Африки — Танзании, Кении и Сомали. На снимке спутника Landsat 9 от 29 апреля 2024 года —наводнение в бассейне реки Руфиджи (Танзания).
2️⃣ Снимок затопленного центра города Порту-Алегри — столицы бразильского штата Риу-Гранди-ду-Сул — сделан 8 мая 2024 года спутником Landsat 8. Паводковые воды затопили исторические кварталы, привели к закрытию международного аэропорта, захлестнули стадионы и сделали непроходимыми несколько шоссе.
3️⃣ На снимке спутника “Канопус-В” (10 мая 2024 года) — паводковая обстановка в Омской области. В ночь с 7 на 8 мая в Усть-Ишимском районе из-за поднявшегося уровня воды в реке Иртыш прорвалась насыпная дамба. В зоне затопления оказались населённые пункты Ашеваны, Колпаково, Малая Игиза, Тюрметяки, Эбаргуль, Атеринки, Большая Тебендя, Слободчики, Усть-Ишим.
#снимки
Метод картографирования цветения рапса
(d’Andrimont et al., 2020) предложили метод картографирования цветения масличного рапса на основе временных рядов оптических данных Sentinel-2 (S2) и радарных данных Sentinel-1 (S1). Район исследования включал в себя северные регионы Германии (N) и южную Баварию (S). Метод использует нормализованный разностный индекс жёлтого цвета (Normalized Difference Yellow Index, NDYI) для S2 (помните, как выглядит цветущий рапс на снимках из космоса?) и локальный минимум коэффициентов обратного рассеяния в поляризации VV для S1. Пик цветения определялся с точностью от 1 до 4 суток. При определении цветения по данным S1 наблюдалась систематическая задержка на 1 сутки, по сравнению с результатами по S2.
📸 Пространственно-усредненные временные ряды S2 NDYI для всех участков на севере и юге Германии с медианными датами начала, пика и конца цветения, полученными по наземным наблюдениям. Пунктирная красная линия соответствует медианной дате начала цветения (BBCH61), пунктирная синяя линия — медианной дате пика цветения (BBCH65), а пунктирная розовая линия — медианной дате окончания цветения (BBCH69).
#сельхоз #индексы
(d’Andrimont et al., 2020) предложили метод картографирования цветения масличного рапса на основе временных рядов оптических данных Sentinel-2 (S2) и радарных данных Sentinel-1 (S1). Район исследования включал в себя северные регионы Германии (N) и южную Баварию (S). Метод использует нормализованный разностный индекс жёлтого цвета (Normalized Difference Yellow Index, NDYI) для S2 (помните, как выглядит цветущий рапс на снимках из космоса?) и локальный минимум коэффициентов обратного рассеяния в поляризации VV для S1. Пик цветения определялся с точностью от 1 до 4 суток. При определении цветения по данным S1 наблюдалась систематическая задержка на 1 сутки, по сравнению с результатами по S2.
📸 Пространственно-усредненные временные ряды S2 NDYI для всех участков на севере и юге Германии с медианными датами начала, пика и конца цветения, полученными по наземным наблюдениям. Пунктирная красная линия соответствует медианной дате начала цветения (BBCH61), пунктирная синяя линия — медианной дате пика цветения (BBCH65), а пунктирная розовая линия — медианной дате окончания цветения (BBCH69).
#сельхоз #индексы