Спутник ДЗЗ
2.87K subscribers
2.21K photos
124 videos
175 files
1.95K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Апрель обычно приносит в Восточную Азию не только весну, но пыль из пустынь Гоби и Такла-Макан. Тучи пыли несутся на восток, пересекая восточные районы Китая, Корейский полуостров и юг Японии.

Прибор MODIS спутника Aqua на снимке, сделанном 25 апреля 2024 года, зафиксировал огромный шлейф пыли, тянущийся через Корейский полуостров. По одному снимку трудно определить происхождение шлейфа, но если “открутить” снимки Aqua на несколько дней назад с помощью Worldview, будет видно, что основным источником пыли является пустыня Гоби, расположенная во Внутренней Монголии.

К востоку от Корейского полуострова в море видно цветение фитопланктона, частично скрытое пылью.

#снимки #атмосфера
UCS Satellite Database

База данных спутников, собранная специалистами Union of Concerned Scientists (UCS), представляет собой список из более чем 7560 действующих спутников.

Информация о каждом спутнике содержит 28 атрибутов, включая техническую информацию о спутнике (масса, мощность, дата запуска, ожидаемый срок службы) и его орбите (апогей, перигей, наклонение и период), а также информацию о том, для чего используется спутник и кто является его владельцем, оператором и создателем.

Данные доступны в формате XLS (Microsoft Excel), а также в текстовом формате с разделителями-табуляциями.

Последнее (на момент публикации этого поста) обновление данных: 1 мая 2023 года

#справка
Поздравляем всех с праздником Победы!
Где искать информацию об участниках Великой Отечественной войны

“Память народа” — основной ресурс для поиска информации об участниках войны, наградных листов, документов воинских частей, воинских захоронений, карт боевых операций и многого другого. Возможность поиска и работы с информацией из банков данных “Мемориал” (погибшие, умершие и пропавшие без вести в годы войны) и “Подвиг народа” (информация о награждениях).
Художественные изображения спутников SabreSat и Phantom на сверхнизких околоземных орбитах.
Redwire разрабатывает разведывательные спутники для сверхнизких околоземных орбит

Преимущества сверхнизких околоземных орбит, то есть орбит, высотой ниже 400 км, хорошо известны. Такие спутники могут обеспечить более высокое пространственное разрешение съемки (до 10 см), по сравнению с аппаратами, находящимися на традиционных для ДЗЗ орбитах (400–700 км), а их запуск обойдётся дешевле.

Американская компания Redwire разрабатывает спутниковую платформу SabreSat для работы на сверхнизких орбитах. В качестве основного заказчика компания рассматривает правительственные организации США.

По словам исполнительного вице-президента Redwire по вопросам национальной безопасности Дина Беллами, полеты на высотах выше беспилотных летательных аппаратов и ниже разросшихся низкоорбитальных спутниковых группировок повышают устойчивость системы наблюдения Земли. Если противоспутниковое оружие поразит цели на традиционных низких орбитах, то спутники на сверхнизких орбитах могут уцелеть.

Масса платформы SabreSat с полезной нагрузкой оставляет около 200 кг. При необходимости SabreSat можно наращивать в длину с помощью дополнительных модулей, а также увеличивать площадь солнечных батарей.

Основной проблемой освоения сверхнизких орбит является то, что их трудно поддерживать: остатки атмосферы слишком быстро снижают высоту орбиты спутника. Для поддержания высоты орбиты Redwire использует электрический ракетный двигатель. “В зависимости от продолжительности миссии мы можем зачерпнуть атомарный кислород и азот, чтобы использовать их в наших электрических двигателях”, — сообщил Спенс Уайз, старший вице-президент Redwire по миссиям и платформам.

Помимо SabreSat, Redwire разрабатывает ещё одну спутниковую платформу для сверхнизких орбит, под названием Phantom. Работы ведутся европейским подразделением компании, расположенным в Бельгии. Phantom разрабатывается для миссии ESA Skimsat, в которой Redwire сотрудничает с Thales Alenia Space, и будет предлагаться европейским и международным клиентам.

Phantom может вмещать полезную нагрузку массой до 50 кг, при этом общая масса космического аппарата может достигать 300 кг. Для поддержания орбиты в течение пяти лет космический аппарат использует электрическую тягу.

Phantom не является копией SabreSat. Это две разные платформы с разными базовыми технологиями и параметрами производительности.

#VLEO #США #война
Оперативная система раннего предупреждения о наводнениях описана в работе

📖 Najafi, H., Shrestha, P. K., Rakovec, O., Apel, H., Vorogushyn, S., Kumar, R., Thober, S., Merz, B., & Samaniego, L. (2024). High-resolution impact-based early warning system for riverine flooding. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48065-y

Современные оперативные системы раннего предупреждения о наводнениях должны быть оснащены механизмами прогнозирования наводнений, их близких к реальному времени последствий и связанных с ними неопределённостей. Схема подобной системы представлена на рисунке ⬆️. Возможности системы продемонстрированы на примере комплексного ретроспективного прогноза затопления пойм во время европейского летнего паводка 2021 года, где она обеспечивает 17-часовой запас времени для проведения необходимых мероприятий. Авторы обсуждают требования к элементам системы раннего предупреждения, современный уровень их развития, а также имеющиеся проблемы.

#наводнение
Каждый год с марта по май некоторые районы Нидерландов превращаются в море цветов. Сезон начинается в марте с пурпурных крокусов, за которыми следуют гиацинты и нарциссы, и заканчивается после того, как в конце апреля пика цветения достигают тюльпаны.

По данным Статистического управления Нидерландов, в 2023 году под луковичные цветы в стране было отведено более 28000 гектаров земли. Более половины этой площади занимают тюльпаны.

На снимке 1️⃣, сделанном 29 апреля 2024 года спутником Landsat 9 над Северной Голландией, видны длинные прямоугольные поля красных, жёлтых и розовых цветов. Снимок 2️⃣ сделан в тот же день аппаратом Sentinel-2. Кроме разноцветных полей, на нём хорошо видны стоящие в море ветровые электростанции.

#снимки
Компания Privateer приобретает компанию Orbital Insight, занимающуюся геопространственной аналитикой [ссылка].

Американская компания Privateer, принадлежащая сооснователю Apple Стиву Возняку, и занимающаяся разработкой продуктов для определения космической ситуационной осведомлённости (SSA), заявила, что это приобретение позволит ей расширить возможности своих геопространственных сервисов.

Privateer не раскрыла стоимость сделки по покупке Orbital Insight. Известно, что Privateer профинансировала приобретение за счет средств, полученных в рамках завершившегося в прошлом месяце раунда серии А стоимостью 56,5 млн долларов.

С таким лихим названием дело могло не ограничиться покупкой)

#SSA
Iceye предложит клиентам программный интерфейс для управления полезной нагрузкой своих спутников [ссылка]

Финская компания Iceye, которой принадлежит группировка радарных спутников, объявила о выпуске двух API (интерфейсов прикладного программирования). Один из них автоматизирует процесс постановки задач спутникам. Другой автоматизирует процесс запроса клиентами радарных снимков из архива Iceye, насчитывающего более 60 тыс. изображений.

Предоставление заказчику возможности управления постановкой задачи на съемку становится всё более распространенной услугой, предлагаемой коммерческими компаниями ДЗЗ.

Не все аппараты Iceye будут снабжены API. Его точно не будет на спутниках, предназначенных исключительно для национальных заказчиков, таких как Объединенные Арабские Эмираты.

#iceye
This media is not supported in your browser
VIEW IN TELEGRAM
DeltaDTM — это глобальная цифровая модель рельефа в прибрежной зоне с горизонтальным пространственным разрешением 1” (∼30 м) и средней абсолютной ошибкой (MAE) по вертикали — 0,45 м. DeltaDTM корректирует Copernicus DEM за счёт использования космических лидарных данных, полученных ICESat-2 и GEDI. Этот процесс включает в себя коррекцию смещения, фильтрацию пикселей, не относящихся к рельефу (например, растительности и зданий), и заполнение пробелов с помощью интерполяции. DeltaDTM уделяет особое внимание прибрежным районам, лежащим ниже уровня моря, которые наиболее уязвимы к повышению уровня моря, оседанию и экстремальным погодным явлениям.

Данные о прибрежном рельефе необходимы для широкого спектра приложений, таких как управление прибрежными районами, моделирование наводнений и планирование адаптации к изменениям климата.

📖 Pronk, M., Hooijer, A., Eilander, D. et al. DeltaDTM: A global coastal digital terrain model. Sci Data 11, 273 (2024). https://doi.org/10.1038/s41597-024-03091-9
🛢 Скачать данные
🗺 DeltaDTM на GEE

#DEM #данные #GEE
Hisea-1 SAR Floodwater Mapping Dataset

Набор данных создан на основе 20 снимков китайского радарного спутника Hisea-1, полученных во время трёх различных наводнений в 2021 году. Все снимки являются продуктами ORG (orthorectification geolocation) уровня 2, снятыми в маршрутном режиме с пространственным разрешение 3 м и имеют поляризацию VV (вертикально-вертикальную).

Все снимки размечены вручную. Все наборы образцов распределены случайным образом в соотношении 6:2:2 и разделены на 1404 обучающих набора, 468 проверочных и 468 тестовых наборов (всего 2340 образцов данных).

Набор данных охватывает площадь 20 тыс. кв. км и содержит реки, притоки, водохранилища, озера и рисовые поля. Он может быть использован для глубокого обучения в задачах выделения областей затопления.

🛢 Данные на Zenodo

📖 Lv, S., Meng, L., Edwing, D., Xue, S., Geng, X., & Yan, X.-H. (2022). High-Performance Segmentation for Flood Mapping of HISEA-1 SAR Remote Sensing Images. Remote Sensing, 14(21), 5504. https://doi.org/10.3390/rs14215504 — описание создания набора данных и обучение моделей на его основе.

#нейронки #данные #наводнение
Начался отбор на Всероссийскую программу «Стратосферный спутник» 2024 года! Ждём ваши заявки💫

Как это было в прошлом году, можно посмотреть тут

До 1 июня вы можете подать заявку на участие, чтобы получить возможность собрать свой собственный спутник и испытать его в стратосфере!

Что для этого надо сделать:
🛰 собрать команду из одного наставника и трёх участников, из которых один может быть студентом СПО или ВУЗа;
🛰 придумать эксперимент, который хотели бы провести в стратосфере;
🛰 перейти на сайт http://stratosputnik.ru/ и заполнить форму для участия;
🛰 дождаться, когда с вами свяжутся организаторы и пришлют форму для заполнения заявки. Заполнить её, отправить обратно и ждать результатов!

3 июня мы назовем 10 команд, которые получат набор конструктора спутника для дальнейшей разработки проекта и приглашение на финал программы.

Что важно: «Стратосферный спутник» проходит в двух лигах:
🚀 Лига «Стратонавт-кандидат» для тех, кто впервые участвует в программе и продумывает свой эксперимент для кубсата форм-фактора 1U.

🚀 Лига «Стратонавт-испытатель» для бывалых участников, чей научный интерес не умещается в один юнит кубсата — им мы даём кубсат форм-фактора 3U.

Более подробная информация и регистрация на сайте http://stratosputnik.ru/

Присоединяйтесь
Эксперименты по наблюдению Земли на МКС 6–12 мая 2024 года

На Международной космической станции продолжается полёт российских участников 71-й длительной экспедиции — космонавтов Роскосмоса Олега Кононенко, Николая Чуба и Александра Гребёнкина.

6 и 7 мая по программе полета российского сегмента станции выполнялись эксперименты:

🔹 УФ-атмосфера — картография ночной атмосферы в ближнем ультрафиолетовом диапазоне широкоугольным детектором с большой апертурой и высоким пространственно-временным разрешением.
🔹 Ураган — отработка технических средств и методов контроля развития катастрофических явлений природного и техногенного характера на Земле или их предвестников.

Источники: 1, 2

#МКС
78 лет назад, 13 мая 1946 года в соответствии с Постановлением Совета Министров СССР №1017-419сс “Вопросы реактивного вооружения” в Министерстве вооружения на базе завода № 88 был создан Научно-исследовательский институт реактивного вооружения — НИИ-88. В 1967 году НИИ-88 переименован в Центральный научно-исследовательский институт машиностроения — ЦНИИмаш.

#история
Набор данных WorldStrat (https://worldstrat.github.io) содержит бесплатные спутниковые снимки высокого и среднего разрешения общей площадью около 10 тысяч кв. км, которые обеспечивают стратифицированное представление основных типов землепользования по всему миру.

К каждому снимку высокого разрешения (1,5 м/пиксель) прилагается несколько соответствующих ему по времени снимков среднего разрешения со спутников Sentinel-2 (10 м/пиксель).

🛢 Данные на Zenodo

🖥 Код на GitHub. Здесь есть несколько предобученных моделей для повышения пространственного разрешения снимков ДЗЗ (т.н. “super-resolution”), а также python-пакет для создания или расширения набора данных.

📖 J. Cornebise, I. Oršolic, F. Kalaitzis. (2022) High-Resolution Satellite Imagery: The WorldStrat Dataset – With Application to Super-Resolution, Advances in Neural Information Processing System 35, Proceedings of NeurIPS 2022. URL: https://openreview.net/forum?id=DEigo9L8xZA

#данные #нейронки
Первый российский гиперспектрометр для наноспутников успешно прошел лётные испытания на орбите [ссылка]

Отечественный гиперспектрометр для наноспутников, разработанный учёными Самарского университета им. Королёва и Института систем обработки изображений (ИСОИ) РАН, успешно прошел лётные испытания в космосе.

Прибор был установлен на борту наноспутника SXC3-219 ИСОИ, выведенного на орбиту 9 августа 2022 года. Размеры спутника: 10х10х30 см (CubeSat 3U). Ранее гиперспектрометры на отечественных космических аппаратах подобного класса не устанавливались.

Испытания подтвердили работоспособность предложенной самарскими учёными схемы внутреннего крепления элементов гиперспектрометра.

Дело в том, что на орбите гиперспектрометр постоянно подвергается значительным изменениям температуры. Колебания температуры вызывают деформацию линз и других элементов конструкции, что приводит к искажениям изображения. Чтобы избежать таких искажений, космический гиперспектрометр снабжают специальной системой термостабилизации — неким подобием "термоса". Однако он занимает много места и, кроме того, потребляет электроэнергию.

Самарские ученые в 2020 году предложили инновационный подход — изменить традиционную схему расположения крепёжных элементов оптики гиперспектрометра. Оказалось, что если крепёжные элементы разместить радиально, то оптическую систему можно будет регулировать при помощи двух компактных шаговых двигателей. Эти двигатели примерно на порядок легче системы термостабилизации, без которой теперь можно обойтись, и потребляют гораздо меньше электроэнергии.

Гиперспектрометр основан на схеме Оффнера. Съёмка осуществляется в видимом и ближнем инфракрасном диапазонах. Количество спектральных каналов — от 150 до 300, спектральное разрешение — от 2 до 4 нм. Масса гиперспектрометра — 1,6 кг, размеры — 13 х 9,4 х 9,4 см.

#гиперспектр #россия
Открывается подача расширенных тезисов на конференцию по космическому образованию "Дорога в космос"!🚀

📅Конференция состоится 1-5 октября 2024 г. в ИКИ РАН. Её цель — обсудить задачи и проблемы космического образования в России и за рубежом в школах, вузах и аспирантуре, вопросы популяризации космических исследований и привлечения молодежи для будущей работы в космической отрасли.
Эта конференция станет третьей для ИКИ РАН — первые две состоялись в 2019 и 2021 гг.

🚀Приглашаем к участию!

📌Регистрация с докладом до 12 июля 2024 г.
📌 Развернутые тезисы докладов (3–5 страниц) принимаются с 13 мая до 20 августа 2024 г.

👉Подробная информация на сайте конференции https://roadtospace.cosmos.ru/
👉Эл.почта оргкомитета [email protected]