Где посмотреть спектральные сигнатуры
Spectral Characteristics Viewer показывает, как тот или иной тип земной поверхности (минералы, растительность, вода, почва) отображается в спектральных каналах конкретного спутника. В Bands представлены каналы Ландсатов, Sentinel-2 MSI, EO-1 ALI, Terra ASTER и Terra MODIS.
Богатейший источник спектров дает USGS Spectral Library Version 7. Из нее взяты и спектры для Spectral Viewer’а. В библиотеке есть ресемплированные спектры для сенсоров Landsat 8 OLI, Sentinel-2 MSI, WorldView3 и ASTER.
#основы
Spectral Characteristics Viewer показывает, как тот или иной тип земной поверхности (минералы, растительность, вода, почва) отображается в спектральных каналах конкретного спутника. В Bands представлены каналы Ландсатов, Sentinel-2 MSI, EO-1 ALI, Terra ASTER и Terra MODIS.
Богатейший источник спектров дает USGS Spectral Library Version 7. Из нее взяты и спектры для Spectral Viewer’а. В библиотеке есть ресемплированные спектры для сенсоров Landsat 8 OLI, Sentinel-2 MSI, WorldView3 и ASTER.
#основы
Вот как выглядит непрерывный спектр отражения морской воды и его “проекция” на каналы Sentinel-2 MSI.
#основы
#основы
Вдогонку к библиотеке спектральных сигнатур.
Чтобы понять, в чем ценность гиперспектральных данных, сравните спектры отражения, полученные гиперспектральными спутниками ASI PRISMA L2C и EO-1 HYPERION 1T со спектрами мультиспектральных спутников Sentinel-3 OLCI EFR, Sentinel-2 MSI, ASTER L1T и Landsat 8 OLI. Показаны только оптические каналы.
Источник: https://github.com/mobigroup/satellite-spectrogram
#основы #гиперспектр
Чтобы понять, в чем ценность гиперспектральных данных, сравните спектры отражения, полученные гиперспектральными спутниками ASI PRISMA L2C и EO-1 HYPERION 1T со спектрами мультиспектральных спутников Sentinel-3 OLCI EFR, Sentinel-2 MSI, ASTER L1T и Landsat 8 OLI. Показаны только оптические каналы.
Источник: https://github.com/mobigroup/satellite-spectrogram
#основы #гиперспектр
Итоги запусков космических аппаратов ДЗЗ в 2022 году и перспективы 2023 год по версии компании РАКУРС.
https://gisgeo.org/rakurs-itogi-zapuskov-kosmicheskih-apparatov-dzz-v-2022-g-i-perspektivy-2023-g/
https://gisgeo.org/rakurs-itogi-zapuskov-kosmicheskih-apparatov-dzz-v-2022-g-i-perspektivy-2023-g/
Большие спутниковые группировки и проблемы прогноза погоды
Прогнозы погоды опираются на данные пассивных радиометров (вроде AMSR-2), которые улавливают слабые сигналы для определения водяного пара, осадков и температуры атмосферы в различных спектральных диапазонах, в частности, в диапазоне от 86 до 92 гГц. И вот недавно SpaceX запросила у Федеральной комиссии по связи США лицензию на передачу сигналов от наземных станций на почти 30 000 спутников Starlink второго поколения в диапазоне от 81 до 86 гГц. Теперь метеорологи боятся, что сигналы наземных станций Starlink создадут помехи в соседних диапазонах и приведут к искажению данных, необходимых для прогноза погоды.
Метеорологи уже пытались защитить диапазон 81–86 гГц от нежелательных излучений на Всемирной конференции по радиосвязи в 2019 году, но делегаты Международного союза электросвязи отказались рассматривать этот вопрос. Так что у Федеральной комиссии нет особых оснований для отказа SpaceX.
Проблема в том, что нет правил, защищающих критические важные для прогнозирования погоды диапазоны, от излучения активных систем в соседних диапазонах. Например, диапазоны 24 ГГц и 50 ГГц имеют решающее значение для получения точных оценок концентрации водяного пара и температуры атмосферы. Существующие правила запрещают вещание в этих диапазонах, но не в соседних. Так, диапазон частот излучения от систем 5G между 24.25 ГГц и 27.5 ГГц может повлиять на диапазон 23.6–24.0 ГГц, в котором ведутся метеонаблюдения.
Новые международные правила вряд ли будут приняты раньше 2027 года. Остается надеяться, что прогнозы метеорологов относительно помех, создаваемых новыми спутниковыми группировками, не сбудутся.
#атмосфера
Прогнозы погоды опираются на данные пассивных радиометров (вроде AMSR-2), которые улавливают слабые сигналы для определения водяного пара, осадков и температуры атмосферы в различных спектральных диапазонах, в частности, в диапазоне от 86 до 92 гГц. И вот недавно SpaceX запросила у Федеральной комиссии по связи США лицензию на передачу сигналов от наземных станций на почти 30 000 спутников Starlink второго поколения в диапазоне от 81 до 86 гГц. Теперь метеорологи боятся, что сигналы наземных станций Starlink создадут помехи в соседних диапазонах и приведут к искажению данных, необходимых для прогноза погоды.
Метеорологи уже пытались защитить диапазон 81–86 гГц от нежелательных излучений на Всемирной конференции по радиосвязи в 2019 году, но делегаты Международного союза электросвязи отказались рассматривать этот вопрос. Так что у Федеральной комиссии нет особых оснований для отказа SpaceX.
Проблема в том, что нет правил, защищающих критические важные для прогнозирования погоды диапазоны, от излучения активных систем в соседних диапазонах. Например, диапазоны 24 ГГц и 50 ГГц имеют решающее значение для получения точных оценок концентрации водяного пара и температуры атмосферы. Существующие правила запрещают вещание в этих диапазонах, но не в соседних. Так, диапазон частот излучения от систем 5G между 24.25 ГГц и 27.5 ГГц может повлиять на диапазон 23.6–24.0 ГГц, в котором ведутся метеонаблюдения.
Новые международные правила вряд ли будут приняты раньше 2027 года. Остается надеяться, что прогнозы метеорологов относительно помех, создаваемых новыми спутниковыми группировками, не сбудутся.
#атмосфера
NASA и DARPA планируют провести орбитальную демонстрацию ядерного теплового двигателя
NASA и DARPA заключили соглашение о совместной разработке ядерного теплового двигателя и запуске космического аппарата с этим двигателем. NASA будет отвечать за разработку двигателя, а DARPA займется его интеграцией в космический корабль и запуском. Цель — продемонстрировать успешную работу ядерного теплового двигателя на орбите уже в 2027 году.
Ядерный тепловой двигатель — это ядерный реактор, через который будет продуваться водород. Реактор будет нагревать водород до высокой температуры. С помощью сопла тепловая энергия будет преобразовываться в механическую и разгонять газ до высокой скорости.
Оба агентства уже работали над своими проектами ядерных двигателей. Под эгидой NASA этим занимались команды из BWX Technologies, General Atomics и Ultra Safe Nuclear Technologies. DARPA провело конкурс на проект DRACO, в первой фазе которого победили команды Blue Origin, General Atomics и Lockheed Martin.
Зачем понадобился ядерный двигатель? NASA заявляет о полете на Марс. Цель не новая, достаточно погуглить NERVA. DARPA — о более широких возможностях для выполнения орбитальных маневров. В интересах национальной безопасности, разумеется.
Заметим, что ядерный двигатель можно использовать как источник энергии (проект Kilopower). В этом случае появляется возможность подпитывать спутники, находящиеся на низких и сверхнизких орбитах. В широком смысле — речь идет об установлении контроля над низкой околоземной орбитой за счет использования более высоких орбит.
Активные работы по ядерной космической тематике ведут Китай и Россия. В обоих случаях планируется использовать ядерный реактор как источник энергии, а не как двигатель. За счет использования ионных или плазменных двигателей удельный импульс такой энергодвигательной установки будет выше, чем в американском проекте. Интересно, кто придет к финишу первым?
#энергетика #война
NASA и DARPA заключили соглашение о совместной разработке ядерного теплового двигателя и запуске космического аппарата с этим двигателем. NASA будет отвечать за разработку двигателя, а DARPA займется его интеграцией в космический корабль и запуском. Цель — продемонстрировать успешную работу ядерного теплового двигателя на орбите уже в 2027 году.
Ядерный тепловой двигатель — это ядерный реактор, через который будет продуваться водород. Реактор будет нагревать водород до высокой температуры. С помощью сопла тепловая энергия будет преобразовываться в механическую и разгонять газ до высокой скорости.
Оба агентства уже работали над своими проектами ядерных двигателей. Под эгидой NASA этим занимались команды из BWX Technologies, General Atomics и Ultra Safe Nuclear Technologies. DARPA провело конкурс на проект DRACO, в первой фазе которого победили команды Blue Origin, General Atomics и Lockheed Martin.
Зачем понадобился ядерный двигатель? NASA заявляет о полете на Марс. Цель не новая, достаточно погуглить NERVA. DARPA — о более широких возможностях для выполнения орбитальных маневров. В интересах национальной безопасности, разумеется.
Заметим, что ядерный двигатель можно использовать как источник энергии (проект Kilopower). В этом случае появляется возможность подпитывать спутники, находящиеся на низких и сверхнизких орбитах. В широком смысле — речь идет об установлении контроля над низкой околоземной орбитой за счет использования более высоких орбит.
Активные работы по ядерной космической тематике ведут Китай и Россия. В обоих случаях планируется использовать ядерный реактор как источник энергии, а не как двигатель. За счет использования ионных или плазменных двигателей удельный импульс такой энергодвигательной установки будет выше, чем в американском проекте. Интересно, кто придет к финишу первым?
#энергетика #война
Спектральная отражательная способность почвы
Для сухих почв отражательная способность обычно увеличивается с увеличением длины волны в видимой, ближней и средней инфракрасной областях спектра. Формы кривых спектральной отражательной способности разных типов почв схожи между собой, но амплитудные характеристики этих кривых могут заметно различаться, в зависимости от свойств почвы.
На спектральную отражательную способность почвенного покрова оказывают влияние такие факторы, как влажность, количество органических веществ, окиси железа, относительная доля песчаников и отложений, а также неровность поверхности.
#основы
Для сухих почв отражательная способность обычно увеличивается с увеличением длины волны в видимой, ближней и средней инфракрасной областях спектра. Формы кривых спектральной отражательной способности разных типов почв схожи между собой, но амплитудные характеристики этих кривых могут заметно различаться, в зависимости от свойств почвы.
На спектральную отражательную способность почвенного покрова оказывают влияние такие факторы, как влажность, количество органических веществ, окиси железа, относительная доля песчаников и отложений, а также неровность поверхности.
#основы