#статьи
А по нейронкам вроде бы самая цитируемая свежая статья в открытом доступе в российском журнале эта - Эффективность алгоритмов машинного обучения и свёрточной нейронной сети для обнаружения патологических изменений на магнитно-резонансных томограммах головного мозга (но тут сложно перебрать все ключевые слова, которые могут быть связаны с глубоким обучением)
https://www.elibrary.ru/download/elibrary_42845903_18431680.pdf
А по нейронкам вроде бы самая цитируемая свежая статья в открытом доступе в российском журнале эта - Эффективность алгоритмов машинного обучения и свёрточной нейронной сети для обнаружения патологических изменений на магнитно-резонансных томограммах головного мозга (но тут сложно перебрать все ключевые слова, которые могут быть связаны с глубоким обучением)
https://www.elibrary.ru/download/elibrary_42845903_18431680.pdf
👍10👎2🤮2
#статьи
Подборка статей по рекомендательным системам 2021-22 годов (в основном, обзорные, по новым трендам и гибридным подходам).
TTRS: Tinkoff Transactions Recommender System Benchmark
Начнём с рекламы отечественного: статья от ребят из Тинькова. Представлен новый датасет - доступен по запросу.
Revisiting Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
Как эффективность рекомендаций зависит от таких факторов как пол, возраст.
New Hybrid Techniques for Business Recommender Systems
Применение рекомендательных систем в бизнес-консалтинге.
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems
Проблема популярных товаров: оказывается, что для обучения более ценны пользователи, которые не интересуются популярными товарами и они же стандартными методами получают худшие рекомендации. Эксперименты с Last.fm, MovieLens, BookCrossing, MyAnimeList.
Recency Dropout for Recurrent Recommender Systems
Предлагают технику аугментации, которая позволяет более эффективно использовать RNN в рекомендациях.
Explainability in Music Recommender Systems
Как следует из заголовка - про объяснение музыкальных рекомендаций, но статья больше про проблематику.
Learning Robust Recommender from Noisy Implicit Feedback
Предложена новая техника обучения - получается более робастное решение. Эксперименты на Adressa, Amazon-book, Yelp. Довольно любопытная работа!
A Survey of Deep Reinforcement Learning in Recommender Systems: A Systematic Review and Future Directions
Обзор по обучению с подкреплением в рекомендациях.
Blockchain-based Recommender Systems: Applications, Challenges and Future Opportunities
Вместе сошлись рекомендации и блокчейн;) Но я в этом ничего не понимаю:(
A Comprehensive Overview of Recommender System and Sentiment Analysis
Можно почитать как не очень детальный обзор методов, обозначенных в заголовке. В целом, не очень интересно.
Advances and Challenges in Conversational Recommender Systems: A Survey
Большой обзор по новому тренду - разговорные (диалоговые) рекомендательные системы. Довольно неплохой!
Graph Neural Networks in Recommender Systems: A Survey
Обзор по ещё одному новому тренду - графовые сети в рекомендациях.
Automated Machine Learning for Deep Recommender Systems: A Survey
Небольшой озор по AutoML в рекомендациях, не очень ясный и подробный.
Measuring "Why" in Recommender Systems: a Comprehensive Survey on the Evaluation of Explainable Recommendation
Небольшой, но довольно "прозрачный" обзор по объяснениям в рекомендациях.
Trust your neighbors: A comprehensive survey of neighborhood-based methods for recommender systems
Из названия можно подумать, что статья про методы соседства в рекомендациях, но в ней довольно неплохой обзор и по смежным методам (например, по случайным блужданиям).
A Survey on Accuracy-oriented Neural Recommendation: From Collaborative Filtering to Information-rich Recommendation
Довольно хороший обзор методов рекомендации, почему-то авторы решили выделить методы, которые позволяют получить неплохую точность.
Efficient Mixed Dimension Embeddings for Matrix Factorization
И закончим статьёй, про которую рассказывали на последнем Дзен-митапе - пока проходит проверку на arxive. Как только пройдёт - дам ссылку.
Подборка статей по рекомендательным системам 2021-22 годов (в основном, обзорные, по новым трендам и гибридным подходам).
TTRS: Tinkoff Transactions Recommender System Benchmark
Начнём с рекламы отечественного: статья от ребят из Тинькова. Представлен новый датасет - доступен по запросу.
Revisiting Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
Как эффективность рекомендаций зависит от таких факторов как пол, возраст.
New Hybrid Techniques for Business Recommender Systems
Применение рекомендательных систем в бизнес-консалтинге.
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems
Проблема популярных товаров: оказывается, что для обучения более ценны пользователи, которые не интересуются популярными товарами и они же стандартными методами получают худшие рекомендации. Эксперименты с Last.fm, MovieLens, BookCrossing, MyAnimeList.
Recency Dropout for Recurrent Recommender Systems
Предлагают технику аугментации, которая позволяет более эффективно использовать RNN в рекомендациях.
Explainability in Music Recommender Systems
Как следует из заголовка - про объяснение музыкальных рекомендаций, но статья больше про проблематику.
Learning Robust Recommender from Noisy Implicit Feedback
Предложена новая техника обучения - получается более робастное решение. Эксперименты на Adressa, Amazon-book, Yelp. Довольно любопытная работа!
A Survey of Deep Reinforcement Learning in Recommender Systems: A Systematic Review and Future Directions
Обзор по обучению с подкреплением в рекомендациях.
Blockchain-based Recommender Systems: Applications, Challenges and Future Opportunities
Вместе сошлись рекомендации и блокчейн;) Но я в этом ничего не понимаю:(
A Comprehensive Overview of Recommender System and Sentiment Analysis
Можно почитать как не очень детальный обзор методов, обозначенных в заголовке. В целом, не очень интересно.
Advances and Challenges in Conversational Recommender Systems: A Survey
Большой обзор по новому тренду - разговорные (диалоговые) рекомендательные системы. Довольно неплохой!
Graph Neural Networks in Recommender Systems: A Survey
Обзор по ещё одному новому тренду - графовые сети в рекомендациях.
Automated Machine Learning for Deep Recommender Systems: A Survey
Небольшой озор по AutoML в рекомендациях, не очень ясный и подробный.
Measuring "Why" in Recommender Systems: a Comprehensive Survey on the Evaluation of Explainable Recommendation
Небольшой, но довольно "прозрачный" обзор по объяснениям в рекомендациях.
Trust your neighbors: A comprehensive survey of neighborhood-based methods for recommender systems
Из названия можно подумать, что статья про методы соседства в рекомендациях, но в ней довольно неплохой обзор и по смежным методам (например, по случайным блужданиям).
A Survey on Accuracy-oriented Neural Recommendation: From Collaborative Filtering to Information-rich Recommendation
Довольно хороший обзор методов рекомендации, почему-то авторы решили выделить методы, которые позволяют получить неплохую точность.
Efficient Mixed Dimension Embeddings for Matrix Factorization
И закончим статьёй, про которую рассказывали на последнем Дзен-митапе - пока проходит проверку на arxive. Как только пройдёт - дам ссылку.
🔥32👍11
#статьи
Небольшое, но довольно чёткое онлайн-руководство по наукометрии от ВШЭ (какие показатели используются, как выбирать журнал для публикации, что такое ORCID и т.п.)
http://sciguide.hse.ru
Небольшое, но довольно чёткое онлайн-руководство по наукометрии от ВШЭ (какие показатели используются, как выбирать журнал для публикации, что такое ORCID и т.п.)
http://sciguide.hse.ru
👍15🔥5
#статьи
Лучшие российские журналы, в которых есть DS-тематика.
Как был сформирован список:
- издаётся в России, подходит по тематике (есть какие-то статьи по прикладным задачам, ML, моделированию и т.п.)
- входит в список ВАК, РИНЦ, Scopus, WoS (ну, до санкций входил)
- статьи лежат в открытом доступе (и можно почитать!)
1. Компьютерная оптика
(много статей по компьютерному зрению)
2. Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
(статей по DL вроде совсем нет, в основном, матмоделирование)
3. Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
(в разделе "Информатика" есть USL, CV и т.п.)
4. Прикладная дискретная математика
(криптография, безопасность, есть анализ текстов )
5. Вестник Томского государственного университета. Управление, вычислительная техника и информатика
(есть релевантный раздел "Информатика и программирование")
Интересно, что тут два Томских, два Самарских и один Саратовский журнал - Московских нет! В журналах "второй категории" (не выполняется какой-то пункт) довольно много Питерских.
Лучшие российские журналы, в которых есть DS-тематика.
Как был сформирован список:
- издаётся в России, подходит по тематике (есть какие-то статьи по прикладным задачам, ML, моделированию и т.п.)
- входит в список ВАК, РИНЦ, Scopus, WoS (ну, до санкций входил)
- статьи лежат в открытом доступе (и можно почитать!)
1. Компьютерная оптика
(много статей по компьютерному зрению)
2. Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
(статей по DL вроде совсем нет, в основном, матмоделирование)
3. Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
(в разделе "Информатика" есть USL, CV и т.п.)
4. Прикладная дискретная математика
(криптография, безопасность, есть анализ текстов )
5. Вестник Томского государственного университета. Управление, вычислительная техника и информатика
(есть релевантный раздел "Информатика и программирование")
Интересно, что тут два Томских, два Самарских и один Саратовский журнал - Московских нет! В журналах "второй категории" (не выполняется какой-то пункт) довольно много Питерских.
👍35🔥14🤔8🤮4😁2
#статьи
Есть такая замечательная коллекция лучших статей на разных DS-конференциях с 1996 года! К сожалению, с прошлого года не обновляется. Но всё рано, очень хорошая подборка.
https://jeffhuang.com/best_paper_awards/
Есть люди, которые целенаправленно читают всех нобелевских лауреатов по литературе или смотрят все фильмы из топа Кинопоиска / IMDb. Можно по аналогии читать по подобным спискам;)
Есть такая замечательная коллекция лучших статей на разных DS-конференциях с 1996 года! К сожалению, с прошлого года не обновляется. Но всё рано, очень хорошая подборка.
https://jeffhuang.com/best_paper_awards/
Есть люди, которые целенаправленно читают всех нобелевских лауреатов по литературе или смотрят все фильмы из топа Кинопоиска / IMDb. Можно по аналогии читать по подобным спискам;)
❤59👍25😁10🔥9