#курс
В этом году дозалил некоторые видео своего расширенного курса по DL, все материалы лучше искать по общей ссылке:
https://alexanderdyakonov.wordpress.com/courses/
А ссылка на видеолекции (теперь их 36): здесь.
Опять не всё успел записать, что хотел, но в ближайшие годы, скорее всего, конкретно этот курс не будет читаться и пополняться.
В этом году дозалил некоторые видео своего расширенного курса по DL, все материалы лучше искать по общей ссылке:
https://alexanderdyakonov.wordpress.com/courses/
А ссылка на видеолекции (теперь их 36): здесь.
Опять не всё успел записать, что хотел, но в ближайшие годы, скорее всего, конкретно этот курс не будет читаться и пополняться.
Анализ малых данных
Курсы
Прикладные задачи анализа данных Курс читался как спецкурс с 2013 года — первый в мире курс по анализу данных на базе соревновательных (Kaggle/TunedIT) и бизнес-кейсов. Первый курс с практико…
#соревнование
Есть много разных соревнований по анализу данных, например, на известной платформе kaggle уклон в сторону машинного обучения. А есть ещё конкурсы по финансовому моделированию, например Financial Modeling and Excel Competitions. В последнем номере журнала Риск-менеджмент в кредитной организации интервью с участником таких конкурсов (там есть примеры задач и данных). Кстати, в них почти нет участников из России (в рейтинге этого года всего 2).
Есть много разных соревнований по анализу данных, например, на известной платформе kaggle уклон в сторону машинного обучения. А есть ещё конкурсы по финансовому моделированию, например Financial Modeling and Excel Competitions. В последнем номере журнала Риск-менеджмент в кредитной организации интервью с участником таких конкурсов (там есть примеры задач и данных). Кстати, в них почти нет участников из России (в рейтинге этого года всего 2).
#планы
Уволился из МГУ. Теперь буду работать в Центральном университете.
Кстати, все, кто хочет поучаствовать в этом образовательном проекте, пишите в личку или на почту.
Уволился из МГУ. Теперь буду работать в Центральном университете.
Кстати, все, кто хочет поучаствовать в этом образовательном проекте, пишите в личку или на почту.
#книга
Большая книга про женщин в науке. Сделана в формате справочника, вроде как наиболее полная по этой теме (но, например, про Софью Ковалевскую ни слова).
https://discovery.ucl.ac.uk/id/eprint/10165716/1/Women-in-the-History-of-Science.pdf
Большая книга про женщин в науке. Сделана в формате справочника, вроде как наиболее полная по этой теме (но, например, про Софью Ковалевскую ни слова).
https://discovery.ucl.ac.uk/id/eprint/10165716/1/Women-in-the-History-of-Science.pdf
#ссылка
Есть такой ex-профессор университета Висконсина Дерик Баундс. Он автор нескольких книг о мозге, которые, впрочем, не слишком популярны, лет 20 назад он вышел на пенсию и ведёт блог, также на его сайте выложены некоторые популярные лекции.
Не знаю, насколько интересны его авторские концепции, а вот следить за блогом часто бывает полезным, т.к. он держит руку на пульсе и ссылается на совсем свежие исследования.
П.С. Что изображено на рисунке, можно понять из его последних лекций и эссе. В первом комментарии под постом дам ответ.
Есть такой ex-профессор университета Висконсина Дерик Баундс. Он автор нескольких книг о мозге, которые, впрочем, не слишком популярны, лет 20 назад он вышел на пенсию и ведёт блог, также на его сайте выложены некоторые популярные лекции.
Не знаю, насколько интересны его авторские концепции, а вот следить за блогом часто бывает полезным, т.к. он держит руку на пульсе и ссылается на совсем свежие исследования.
П.С. Что изображено на рисунке, можно понять из его последних лекций и эссе. В первом комментарии под постом дам ответ.
#забавно
Если писатели не хотят дописывать серию романов, то можно использовать ИИ;) Интересная идея - с помощью языковой модели дописали "Песнь льда и пламени" Джорджа Мартина. Не думаю, что могло получиться хорошо (сам не стал читать, т.к. уже написанные книги ПЛиП тоже не читал), но попытка интересная (ранее с помощью GPT2 генерировали альтернативные концовки, здесь с помощью ChatGPT две последние книги серии).
https://github.com/LiamSwayne/AI-Song-Of-Ice-And-Fire
Если писатели не хотят дописывать серию романов, то можно использовать ИИ;) Интересная идея - с помощью языковой модели дописали "Песнь льда и пламени" Джорджа Мартина. Не думаю, что могло получиться хорошо (сам не стал читать, т.к. уже написанные книги ПЛиП тоже не читал), но попытка интересная (ранее с помощью GPT2 генерировали альтернативные концовки, здесь с помощью ChatGPT две последние книги серии).
https://github.com/LiamSwayne/AI-Song-Of-Ice-And-Fire
#визуализация
Иллюстрации различных сложных систем (довольно много: тут и странные аттракторы, и модель Шеллинга, и preferential attachment). Сделаны интерактивными (можно менять параметры, которые определяют поведение).
https://www.complexity-explorables.org/
Иллюстрации различных сложных систем (довольно много: тут и странные аттракторы, и модель Шеллинга, и preferential attachment). Сделаны интерактивными (можно менять параметры, которые определяют поведение).
https://www.complexity-explorables.org/
#ссылка
Сайт с информацией о современных моделях ИИ. Особенно там удачные вот такие визуализации (которые многие любят вставлять в презентации) и таблицы с параметрами моделей и ссылками на них. Последние полгода сайт стал меньше обновляться.
https://lifearchitect.ai/
Сайт с информацией о современных моделях ИИ. Особенно там удачные вот такие визуализации (которые многие любят вставлять в презентации) и таблицы с параметрами моделей и ссылками на них. Последние полгода сайт стал меньше обновляться.
https://lifearchitect.ai/
#задача
В августе я собеседовал довольно много абитуриентов. Вот одна из задач, которую я часто спрашивал (на собесах когда-то я её тоже использовал).
Мы играем в азартную игру, состоящую из конов, в каждом коне есть победитель и ему засчитывается очко (изначально счёт 0-0). Перед игрой мы сбросились по 100 рублей и договорились, что тот, кто первый наберёт 10 очков, забирает весь банк (200 рублей). Сейчас счёт 8-6 в Вашу пользу и мы не можем продолжить игру (например, мы играли на игровом автомате и он сломался). Как бы Вы предложили наиболее честно разделить банк?
Понятно, что в постановке присутствует нечёткость в виде "наиболее честно", но формализация этого как раз и интересна, также как и ход рассуждений (счёт при желании можно изменить для простоты вычислений).
В августе я собеседовал довольно много абитуриентов. Вот одна из задач, которую я часто спрашивал (на собесах когда-то я её тоже использовал).
Мы играем в азартную игру, состоящую из конов, в каждом коне есть победитель и ему засчитывается очко (изначально счёт 0-0). Перед игрой мы сбросились по 100 рублей и договорились, что тот, кто первый наберёт 10 очков, забирает весь банк (200 рублей). Сейчас счёт 8-6 в Вашу пользу и мы не можем продолжить игру (например, мы играли на игровом автомате и он сломался). Как бы Вы предложили наиболее честно разделить банк?
Понятно, что в постановке присутствует нечёткость в виде "наиболее честно", но формализация этого как раз и интересна, также как и ход рассуждений (счёт при желании можно изменить для простоты вычислений).
#интересно
Есть такой Adon Joseph - бывший аэрокосмический инженер, создававший системы навигации космических кораблей в 90-е и руководивший большими проектами в оборонке. На пенсии он как-то обнаружил, что «преддверие» - часть внутреннего уха - устроено также как военные системы навигации. После этого он 6 лет изучал нейробиологию и построил свои карты головного мозга. В результате пришёл к выводу, что мозг это реально сложная инженерная система, кем-то специально спроектированная, ударился в религию и создал свой любопытный сайт.
Есть такой Adon Joseph - бывший аэрокосмический инженер, создававший системы навигации космических кораблей в 90-е и руководивший большими проектами в оборонке. На пенсии он как-то обнаружил, что «преддверие» - часть внутреннего уха - устроено также как военные системы навигации. После этого он 6 лет изучал нейробиологию и построил свои карты головного мозга. В результате пришёл к выводу, что мозг это реально сложная инженерная система, кем-то специально спроектированная, ударился в религию и создал свой любопытный сайт.
#интересно
Многие неправильно думают, почему гребневая регрессия (Ridge Regression) так называется. В основном считают, что из-за того, что в явной формуле для весов возникает диагональная матрица - как будто "матрица с гребнем" (так даже ChatGPT объясняет). Но до появления гребневой регрессии возник гребневый анализ (Ridge Analysis) и в нём отсылка была к форме поверхности функций, с которыми работали. Не так давно вышла статья, в которой один из потомков изобретателей "всего гребневого" рассказывает о первых работах.
Hoerl R. W. Ridge regression: a historical context //Technometrics. – 2020. – Т. 62. – №. 4. – С. 420-425.
Многие неправильно думают, почему гребневая регрессия (Ridge Regression) так называется. В основном считают, что из-за того, что в явной формуле для весов возникает диагональная матрица - как будто "матрица с гребнем" (так даже ChatGPT объясняет). Но до появления гребневой регрессии возник гребневый анализ (Ridge Analysis) и в нём отсылка была к форме поверхности функций, с которыми работали. Не так давно вышла статья, в которой один из потомков изобретателей "всего гребневого" рассказывает о первых работах.
Hoerl R. W. Ridge regression: a historical context //Technometrics. – 2020. – Т. 62. – №. 4. – С. 420-425.
#книга
Ilias Diakonikolas, Daniel M. Kane
Algorithmic High-Dimensional Robust Statistics
Монография по современной многомерной робастной статистике. Стиль «очень математический», без лишних примеров «на пальцах», только утверждения и доказательства. Есть даже глава про «робастное машинное обучение» (но там дальше линейной регрессии не идут). Из книги, в частности, можно узнать, что SIFT это не только scale-invariant feature transform, но и Subspace Isotropic Filtering. Из плюсов: есть нетривиальные задачи в конце каждой главы.
Ilias Diakonikolas, Daniel M. Kane
Algorithmic High-Dimensional Robust Statistics
Монография по современной многомерной робастной статистике. Стиль «очень математический», без лишних примеров «на пальцах», только утверждения и доказательства. Есть даже глава про «робастное машинное обучение» (но там дальше линейной регрессии не идут). Из книги, в частности, можно узнать, что SIFT это не только scale-invariant feature transform, но и Subspace Isotropic Filtering. Из плюсов: есть нетривиальные задачи в конце каждой главы.
#статьи
Есть такая замечательная коллекция лучших статей на разных DS-конференциях с 1996 года! К сожалению, с прошлого года не обновляется. Но всё рано, очень хорошая подборка.
https://jeffhuang.com/best_paper_awards/
Есть люди, которые целенаправленно читают всех нобелевских лауреатов по литературе или смотрят все фильмы из топа Кинопоиска / IMDb. Можно по аналогии читать по подобным спискам;)
Есть такая замечательная коллекция лучших статей на разных DS-конференциях с 1996 года! К сожалению, с прошлого года не обновляется. Но всё рано, очень хорошая подборка.
https://jeffhuang.com/best_paper_awards/
Есть люди, которые целенаправленно читают всех нобелевских лауреатов по литературе или смотрят все фильмы из топа Кинопоиска / IMDb. Можно по аналогии читать по подобным спискам;)
#полезно
Один интересный кейс, который мне очень нравится: как догадаться до нужной деформации целевых значений.
Один интересный кейс, который мне очень нравится: как догадаться до нужной деформации целевых значений.
#книга
Посмотрел книгу Введение в автоматизированное машинное обучение (AutoML). Главный недостаток - это не совсем книга, это скорее сборник статей, часть построена по принципу обзора по теме со ссылками на первоисточники. Зато попадаются интересные ссылки. Есть главы по Auto-WEKA, Hyperpopt, Auto-sklearn, TPOT (для первичного знакомства, наверное, подойдёт). Последняя глава - обзор результатов давнишних соревнований Изабель Гийон по AutoML.
К слову, создатели LightAutoML сделали курс из коротких видео по своему продукту: https://developers.sber.ru/help/lightautoml
Посмотрел книгу Введение в автоматизированное машинное обучение (AutoML). Главный недостаток - это не совсем книга, это скорее сборник статей, часть построена по принципу обзора по теме со ссылками на первоисточники. Зато попадаются интересные ссылки. Есть главы по Auto-WEKA, Hyperpopt, Auto-sklearn, TPOT (для первичного знакомства, наверное, подойдёт). Последняя глава - обзор результатов давнишних соревнований Изабель Гийон по AutoML.
К слову, создатели LightAutoML сделали курс из коротких видео по своему продукту: https://developers.sber.ru/help/lightautoml
#визуализация
Странно, что я ещё не упоминал здесь такой интересный ресурс. Можно использовать для освежения в памяти тем по ML. Полно интересных рисунков по каждой теме. Есть три блока: ML, ML-Engineering, проективная геометрия, по DL совсем чуть-чуть и ресурс не обновляется с начала года.
https://illustrated-machine-learning.github.io/
Странно, что я ещё не упоминал здесь такой интересный ресурс. Можно использовать для освежения в памяти тем по ML. Полно интересных рисунков по каждой теме. Есть три блока: ML, ML-Engineering, проективная геометрия, по DL совсем чуть-чуть и ресурс не обновляется с начала года.
https://illustrated-machine-learning.github.io/
#интересно
Для тех, кто любит глянцевые журналы. Вот тут до сих пор регулярно выпускают журнал по Computer Vision. Электронные версии выложены в открытом доступе, там даже странички перелистываются со звуком шуршания журнальных;) В одном из последних номеров интервью с Яном Лекуном.
https://www.rsipvision.com/computer-vision-news/
Для тех, кто любит глянцевые журналы. Вот тут до сих пор регулярно выпускают журнал по Computer Vision. Электронные версии выложены в открытом доступе, там даже странички перелистываются со звуком шуршания журнальных;) В одном из последних номеров интервью с Яном Лекуном.
https://www.rsipvision.com/computer-vision-news/
#книга
Simon J.D. Prince "Understanding Deep Learning"
Незаслуженно малоизвестная книга. Но это самое лучшее, что в последние годы писалось по глубокому обучению. Материал очень современный (GPT3, диффузионные модели, графовые сети есть). Повествование с основ и до этических проблем, очень широкий охват. Текст и рисунки авторские. Достаточно подробная библиография. Ну разве что примеров кода нет (книга теоретическая). Настоятельно рекомендую!
https://udlbook.github.io/udlbook/
Simon J.D. Prince "Understanding Deep Learning"
Незаслуженно малоизвестная книга. Но это самое лучшее, что в последние годы писалось по глубокому обучению. Материал очень современный (GPT3, диффузионные модели, графовые сети есть). Повествование с основ и до этических проблем, очень широкий охват. Текст и рисунки авторские. Достаточно подробная библиография. Ну разве что примеров кода нет (книга теоретическая). Настоятельно рекомендую!
https://udlbook.github.io/udlbook/
#ссылки
Один из каталогов "лучших статей в ML" https://github.com/dmarx/anthology-of-modern-ml
Из обновлений последних лет:
2022
- Chinchilla - Training Compute-Optimal Large Language Models
- Stable Diffusion - High-Resolution Image Synthesis with Latent Diffusion Models
- Instruct tuning - Training language models to follow instructions with human feedback
- Efficient diffusion sampling - Elucidating the Design Space of Diffusion-Based Generative Models
- Diffusion as a de-corruption process - Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
2023
- ToolFormer - Toolformer: Language Models Can Teach Themselves to Use Tools
- Gaussian Splatting - 3D Gaussian Splatting for Real-Time Radiance Field Rendering
Один из каталогов "лучших статей в ML" https://github.com/dmarx/anthology-of-modern-ml
Из обновлений последних лет:
2022
- Chinchilla - Training Compute-Optimal Large Language Models
- Stable Diffusion - High-Resolution Image Synthesis with Latent Diffusion Models
- Instruct tuning - Training language models to follow instructions with human feedback
- Efficient diffusion sampling - Elucidating the Design Space of Diffusion-Based Generative Models
- Diffusion as a de-corruption process - Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
2023
- ToolFormer - Toolformer: Language Models Can Teach Themselves to Use Tools
- Gaussian Splatting - 3D Gaussian Splatting for Real-Time Radiance Field Rendering
#блог
Ресурс по оптимизации, я когда-то писал о курсах автора, но у него есть ещё и блог.
https://fa.bianp.net/
Ресурс по оптимизации, я когда-то писал о курсах автора, но у него есть ещё и блог.
https://fa.bianp.net/
#забавно
У Гугла есть репозиторий проектов-экспериментов, очень интересных и залипательных.
https://experiments.withgoogle.com/
В качестве примера - проект уже почти годичной давности "океан книг": моря здесь - области знаний, острова - авторы, города на островах - книги. На рисунке остров Саттона, с одним городом, зато каким;)
https://artsexperiments.withgoogle.com/ocean-of-books
У Гугла есть репозиторий проектов-экспериментов, очень интересных и залипательных.
https://experiments.withgoogle.com/
В качестве примера - проект уже почти годичной давности "океан книг": моря здесь - области знаний, острова - авторы, города на островах - книги. На рисунке остров Саттона, с одним городом, зато каким;)
https://artsexperiments.withgoogle.com/ocean-of-books