VIRSUN
15.6K subscribers
364 photos
217 videos
2 files
223 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
加入频道
This media is not supported in your browser
VIEW IN TELEGRAM
📌 دامنه‌برداری (Domain Adaptation) در یادگیری ماشین

یکی از چالش‌های اصلی در هوش مصنوعی اینه که مدلی که روی یک دامنه (Domain) آموزش دیده، معمولاً روی دامنه‌های دیگه عملکرد خوبی نداره. به این مشکل می‌گن Domain Shift.

✦ مثلا:
🔹 مدلی که برای تشخیص عیب روی کاتدهای مس در یک کارخانه آموزش دیده، وقتی روی تصاویر کارخانه دیگه استفاده میشه (با نور، زاویه دوربین یا کیفیت متفاوت)، دچار افت دقت میشه.

اینجا Domain Adaptation وارد میشه 👇

🎯 تعریف:

فرآیندی که در اون یک مدل آموزش‌دیده روی دامنه مبدأ (Source Domain)، برای عملکرد بهتر روی دامنه مقصد (Target Domain) تطبیق داده میشه، بدون نیاز به برچسب‌گذاری گسترده روی داده‌های مقصد.

🔑 رویکردهای اصلی:

1. Feature Alignment

تطبیق توزیع ویژگی‌های مبدأ و مقصد با تکنیک‌هایی مثل MMD (Maximum Mean Discrepancy) یا CORAL.



2. Adversarial Learning

استفاده از شبکه‌های خصمانه (GAN) برای یادگیری نمایش مشترک بین دو دامنه.



3. Self-Training / Pseudo-Labeling

مدل روی داده مقصد پیش‌بینی می‌کنه و برچسب‌های احتمالی به‌صورت شبه‌برچسب برای یادگیری دوباره استفاده میشه.



4. Domain-Invariant Features

یادگیری ویژگی‌هایی که به دامنه وابسته نیستن و در هر دو محیط پایدار عمل می‌کنن.




🏭 کاربردهای صنعتی:

♻️پردازش تصویر: تشخیص عیب در خطوط تولید مختلف.
♻️پزشکی: مدلی که روی داده‌های MRI یک دستگاه آموزش دیده، روی دستگاه دیگه هم کار کنه.
♻️خودروهای خودران: انتقال یادگیری از شبیه‌ساز به دنیای واقعی.


خلاصه:
عبارت Domain Adaptation یعنی مدل رو طوری آموزش بدیم که انعطاف‌پذیر بشه و در محیط‌های جدید هم جواب بده، بدون اینکه لازم باشه از صفر دوباره داده‌گذاری کنیم.

@rss_ai_ir

#DomainAdaptation #MachineLearning #TransferLearning #هوش_مصنوعی
👍11🥰8😁76🔥6🎉5👏3