VIRSUN
14K subscribers
493 photos
290 videos
2 files
295 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
加入频道
🧠 ۱۰ چالش داغ پردازش تصویر که محققان در سال ۲۰۲۵ دنبال می‌کنند

📷 بر اساس منابع معتبر مانند OpenCV و گزارش‌های تحقیقاتی جدید، این‌ها مهم‌ترین دغدغه‌های امروز در بینایی ماشین و Image Processing هستن:

1. کیفیت پایین و کمبود داده‌های آموزشی:
- کیفیت پایین تصاویر به‌خاطر نویز حسگرها، فشرده‌سازی، زاویه دید، نورپردازی و غیره.
- کمبود دیتاست برچسب‌خورده مخصوصاً در حوزه‌های صنعتی یا پزشکی، که مدل‌ها برای یادگیری عمیق به داده‌ زیاد و دقیق نیاز دارند.

2. تنوع و پیچیدگی داده‌های تصویری:
- تغییرات زیاد در زاویه، نور، مقیاس، پس‌زمینه و پوشش جزئی (Occlusion) باعث می‌شود الگوریتم‌ها در شناسایی اشیاء یا ویژگی‌ها دچار مشکل شوند.

3. پردازش بلادرنگ (Real-Time):
- کاربردهای صنعتی، خودروهای خودران یا واقعیت افزوده نیازمند تحلیل سریع و دقیق هستند. محدودیت توان محاسباتی و بازده الگوریتم‌ها موضوع داغ تحقیقات است.

4. انتزاع ویژگی‌های سه‌بعدی از تصاویر دوبعدی:
- استخراج عمق، شکل و موقعیت فضایی اجسام—با استفاده از فقط چند تصویر—همچنان یکی از چالش‌های بنیادی است.

5. یکپارچگی داده‌ها از منابع چندگانه (Multi-modal):
- ترکیب اطلاعات تصویری با سیگنال‌های دیگر (مانند صوت، متون یا داده‌های سنسورهای مختلف)، همچنان یک چالش کلیدی برای افزایش دقت در برنامه‌های مختلف است.

6. برچسب‌گذاری نادرست (Imbalanced/Incorrect Labels):
- وجود برچسب‌های غلط یا نامتعادل در دیتاست‌ها باعث عملکرد ضعیف مدل‌های یادگیری می‌شود.

7. ابعاد بالا و پیچیدگی محاسباتی:
- حجم بالای داده‌های تصویری (میلیون‌ها پیکسل در هر تصویر) منجر به مسائل "curse of dimensionality" و نیاز به بهینه‌سازی شدید مدل‌ها می‌شود.

8. ملاحظات اخلاقی و سوگیری مدل‌ها
- مدل‌ها ممکن است نسبت به دسته‌های خاص (جنسیت، نژاد،...) دچار سوگیری شوند یا در شناسایی تصاویر حساس دچار خطا گردند.

9. تولید خودکار داده از طریق مدل‌های مولد (GANs و Diffusion models):
- چگونه می‌شود داده‌های مصنوعی واقع‌گرایانه تولید کرد که برای آموزش مدل‌ها مفید باشند و دچار overfitting یا خطا نشوند؟

10. خودتوضیح‌دهی مدل‌ها (Explainability):

- مدل‌های Deep Learning عمدتاً یک "جعبه سیاه" محسوب می‌شوند. توضیح تصمیمات مدل، به ویژه در پزشکی یا صنایع حساس، یک چالش برجسته است.



#پردازش_تصویر #بینایی_ماشین #هوش_مصنوعی #ImageProcessing #ComputerVision #DeepLearning #AI_2025 #تحقیقات_هوش_مصنوعی

🖼 @rss_ai_ir
👏3🔥2👍1
🧠 تشخیص چهره با DeepFace؛ کتابخانه‌ای قدرتمند برای Python
---

کتابخانه‌ی DeepFace یک ابزار سبک اما پیشرفته برای تشخیص چهره و تحلیل ویژگی‌های صورت مثل سن، جنسیت، احساس و نژاد در زبان پایتون است. این فریم‌ورک به‌طور هوشمند مدل‌های قدرتمندی مانند:
🔹 VGG-Face
🔹 FaceNet
🔹 ArcFace
🔹 Dlib
🔹 OpenFace
و سایر مدل‌های SOTA را پوشش می‌دهد 🚀

---

📌 مراحل استاندارد تشخیص چهره شامل:
✔️ تشخیص چهره (Detect)
✔️ هم‌ترازسازی (Align)
✔️ نرمال‌سازی (Normalize)
✔️ استخراج ویژگی (Represent)
✔️ تأیید هویت (Verify)

و DeepFace همه‌ی این مراحل را تنها با یک خط کد انجام می‌دهد!

---

📊 دقت عملکرد:
🔬 آزمایش‌ها نشون دادن مدل‌های DeepFace به دقتی بالاتر از انسان‌ها در شناخت چهره دست پیدا کردن (بیش از 97.5٪)!

---

📥 نصب آسان:
فقط کافیه این دستور رو اجرا کنی:
`bash
pip install deepface

🌐 لینک گیت‌هاب برای اطلاعات بیشتر و مستندات:
🖥 https://github.com/serengil/deepface


---

#تشخیص_چهره #یادگیری_عمیق #پایتون #FaceRecognition #DeepLearning #Python #ComputerVision #DeepFace

📡 برای آموزش‌های تخصصی هوش مصنوعی:
🔗 https://yangx.top/rss_ai_ir
👍2👎1👏1
🔍 دوره تخصصی بینایی کامپیوتر - دانشگاه برکلی
🖥 CS C280 - Spring 2025

📌 اگر دنبال یه مسیر منظم، آکادمیک و در عین حال عملی برای یادگیری بینایی کامپیوتر هستی، این دوره دقیقاً همونه! دانشگاه برکلی در دوره CS C280 مفاهیم کلاسیک بینایی ماشین رو با جدیدترین مدل‌های یادگیری عمیق ترکیب کرده:

🔹 Vision Transformers
🔹 Diffusion Models
🔹 Vision-Language Models
🔹 Video Recognition & 3D Vision
🔹 Multimodal AI & Novel View Synthesis

کل دوره در ۲۵ جلسه، با ساختار دقیق، تمرین، پروژه و اسلایدهای آموزشی برگزار شده و برای عموم رایگانه!

📅 سرفصل‌های دوره:
از کالیبراسیون دوربین و هندسه چندنما (Multi-view Geometry)
تا درک انسان، شناسایی حرکات و پیش‌بینی سه‌بعدی 👇
📷 ViT, GANs, VAE, Object Detection, Face Recognition, و …

📎 لینک دسترسی به دوره: 🌐 CS C280 Website - Berkeley

📌 تکلیف‌ها (Assignments) هم با ددلاین مشخص طراحی شدن تا تجربه واقعی دانشگاهی داشته باشی.


---

📚 برای کسانی که می‌خوان مسیر حرفه‌ای بینایی کامپیوتر و هوش مصنوعی رو جدی ادامه بدن، این دوره یکی از بهترین شروع‌هاست.

#ComputerVision #DeepLearning #VisionTransformer #Berkeley #AI_Course #یادگیری_عمیق #بینایی_ماشین #هوش_مصنوعی
@rss_ai_ir | مرجع تخصصی هوش مصنوعی 🚀
👍22🔥20👏1917🎉13🥰12😁12
🧩 مدل OmniPart: نسل جدید تولید سه‌بعدی با آگاهی از اجزای شیء

پژوهشگران در مدل OmniPart روشی دو‌مرحله‌ای برای ساخت اشیاء سه‌بعدی قابل‌ویرایش از روی تصاویر و ماسک‌های دوبعدی ارائه کرده‌اند.

🔹 ویژگی‌های کلیدی:

1. جدا‌سازی معنایی قوی بین اجزاء (Semantic Decoupling)
2. انسجام ساختاری بالا بین کل مدل (Structural Cohesion)
3. امکان کنترل و ویرایش بخش‌های جداگانه مدل پس از تولید



🔹 روش کار:

مرحله اول: یک ترنسفورمر خودبازگشتی (Autoregressive Transformer) چیدمان سه‌بعدی اجزاء را به صورت توالی باکس‌ها، بر اساس ماسک‌های ۲بعدی، طراحی می‌کند.

مرحله دوم: یک ماژول سنتز مکانی (Spatially-Conditioned Synthesis) — آموزش‌دیده از یک مدل تولیدی پیش‌فرض — همه اجزاء را به طور همزمان در این چیدمان می‌سازد.


🔹 نتایج:

دقت F1 Score = 0.74 در سطح جزء (با آستانه Chamfer Distance < 0.1)

عملکرد بهتر نسبت به تمام مدل‌های موجود در تولید سه‌بعدی مبتنی بر اجزاء


🔹 کاربردها:

♻️ویرایش جزئی مدل‌های سه‌بعدی
♻️انیمیشن‌سازی بخشی
♻️اختصاص متریال به قسمت‌های خاص در سیستم‌های تعاملی


📄 مطالعه کامل: arXiv
💻 کد و مدل: HuggingFace

#3D #ComputerVision #GenerativeAI
@rss_ai_ir
👍14😁13🥰10👏10🎉9🔥83
📸 تشخیص اشیاء با استفاده از مدل‌های بینایی-زبانی (VLM)
@rss_ai_ir 🤖

⛔️در مدل‌های سنتی تشخیص شیء، یک محدودیت جدی وجود دارد: مجموعه کلاس‌ها همان‌هایی هستند که در داده‌های آموزشی دیده شده‌اند (Closed-set Object Detection). برای رفع این محدودیت، نسل جدیدی از مدل‌ها به نام Open Vocabulary Object Detection (OVOD) معرفی شده‌اند که توانایی تشخیص اشیاء دلخواه را دارند.

در یک مقاله جدید، مروری بر مدل‌های OVOD مبتنی بر Vision Language Model (VLM) انجام شده است.

📌 در این مقاله می‌خوانید:

✳️رویکردهای مختلف برای به‌کارگیری VLM در تشخیص شیء

✳️نتایج مقایسه مدل‌ها در بنچمارک‌های Closed-Set و Open Vocabulary

✳️دلیل ماندگاری ایده‌های CLIP در این حوزه


🔗 مطالعه کامل مقاله در لینک زیر 👇
مقاله

#هوش_مصنوعی #بینایی_ماشین #VLM #تشخیص_شیء #CLIP #OpenVocabulary #ComputerVision #OVOD
🎉7🔥65😁5👍3👏1