📌 عنوان:
چرا دراپاوت فقط یک «خاموشکننده تصادفی» نیست؟ 🤔🔍
---
بیشتر متخصصان هوش مصنوعی، دراپاوت را صرفاً روشی برای خاموش کردن تصادفی نرونها میدانند، اما پشت این تکنیک ایدهای عمیقتر وجود دارد که آن را به یکی از مهمترین روشهای منظمسازی (Regularization) تبدیل کرده است.
💡 ایده اصلی
در مراحل آموزش، هر بار درصدی از نرونها (مثلاً ۲۰ تا ۵۰٪) به طور تصادفی غیرفعال میشوند. این کار جلوی وابستگی بیشازحد شبکه به مسیرهای خاص پردازش اطلاعات را میگیرد.
🌀 اثر پنهان
دراپاوت در عمل شبیه ترکیبگیری مدلها (Ensemble) عمل میکند. با هر بار غیرفعال شدن بخشی از نرونها، یک زیرمدل جدید ساخته میشود و در نهایت، خروجی مدل مانند میانگینگیری از هزاران زیرمدل مستقل خواهد بود.
🚀 چرا اهمیت دارد؟
- کاهش شدید بیشبرازش (Overfitting) بدون نیاز به داده اضافه
- ایجاد تعداد زیادی مدل کوچک در دل یک مدل اصلی بدون هزینهی جداگانه
- سازگاری فوقالعاده با معماریهای پیشرفته مثل ترنسفورمرها
⚙️ نکته تخصصی
در هنگام تست، دراپاوت غیرفعال است اما وزنها با توجه به احتمال غیرفعالسازی، مقیاسبندی (Re-scaling) میشوند تا خروجی سازگار باقی بماند.
---
🔖 #هوش_مصنوعی #یادگیری_عمیق #LLM #شبکه_عصبی #دراپ_اوت #DeepLearning #AI #MachineLearning
@rss_ai_ir
چرا دراپاوت فقط یک «خاموشکننده تصادفی» نیست؟ 🤔🔍
---
بیشتر متخصصان هوش مصنوعی، دراپاوت را صرفاً روشی برای خاموش کردن تصادفی نرونها میدانند، اما پشت این تکنیک ایدهای عمیقتر وجود دارد که آن را به یکی از مهمترین روشهای منظمسازی (Regularization) تبدیل کرده است.
💡 ایده اصلی
در مراحل آموزش، هر بار درصدی از نرونها (مثلاً ۲۰ تا ۵۰٪) به طور تصادفی غیرفعال میشوند. این کار جلوی وابستگی بیشازحد شبکه به مسیرهای خاص پردازش اطلاعات را میگیرد.
🌀 اثر پنهان
دراپاوت در عمل شبیه ترکیبگیری مدلها (Ensemble) عمل میکند. با هر بار غیرفعال شدن بخشی از نرونها، یک زیرمدل جدید ساخته میشود و در نهایت، خروجی مدل مانند میانگینگیری از هزاران زیرمدل مستقل خواهد بود.
🚀 چرا اهمیت دارد؟
- کاهش شدید بیشبرازش (Overfitting) بدون نیاز به داده اضافه
- ایجاد تعداد زیادی مدل کوچک در دل یک مدل اصلی بدون هزینهی جداگانه
- سازگاری فوقالعاده با معماریهای پیشرفته مثل ترنسفورمرها
⚙️ نکته تخصصی
در هنگام تست، دراپاوت غیرفعال است اما وزنها با توجه به احتمال غیرفعالسازی، مقیاسبندی (Re-scaling) میشوند تا خروجی سازگار باقی بماند.
---
🔖 #هوش_مصنوعی #یادگیری_عمیق #LLM #شبکه_عصبی #دراپ_اوت #DeepLearning #AI #MachineLearning
@rss_ai_ir
🥰8👏5😁5❤4🔥4👍2🎉2
📌 آموزش رایگان Azure Machine Learning
اگر دنبال یادگیری عملی Azure ML هستید، این پلیلیست یوتیوب شامل آموزشهای گامبهگام است:
🔹 مروری بر Azure Machine Learning
🔹 آموزش AutoML
🔹 طراحی و آموزش مدلها با Azure ML Designer
🔹 استقرار مدلها
🔹 کدنویسی مستقیم (Code-First) با Azure ML
🔹 یکپارچهسازی با MLflow
🔹همچنین MLOps و مدیریت عملیات یادگیری ماشین
🎥 لینک پلیلیست کامل:
YouTube - Azure Machine Learning Playlist
#Azure #MachineLearning #MLOps #AI #Python
@rss_ai_ir
اگر دنبال یادگیری عملی Azure ML هستید، این پلیلیست یوتیوب شامل آموزشهای گامبهگام است:
🔹 مروری بر Azure Machine Learning
🔹 آموزش AutoML
🔹 طراحی و آموزش مدلها با Azure ML Designer
🔹 استقرار مدلها
🔹 کدنویسی مستقیم (Code-First) با Azure ML
🔹 یکپارچهسازی با MLflow
🔹همچنین MLOps و مدیریت عملیات یادگیری ماشین
🎥 لینک پلیلیست کامل:
YouTube - Azure Machine Learning Playlist
#Azure #MachineLearning #MLOps #AI #Python
@rss_ai_ir
❤7👍7🎉5🔥4😁4👏1