Python/ django
60.9K subscribers
2.18K photos
96 videos
48 files
2.91K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
⚡️Исследование неочевидных аспектов квантового программирования:

10 библиотек для тех, кто хочет погрузиться в квантовое программирование:

Qiskit — это библиотека для квантового программирования, которая позволяет пользователям писать программы для квантовых компьютеров IBM. Включает поддержку классических, квантовых алгоритмов и визуализацию квантовых схем.

Cirq — это библиотека от Google для создания, симуляции и выполнения квантовых алгоритмов. Она предназначена для использования с квантовыми компьютерами и обеспечивает возможность работы с сложными квантовыми системами.

PennyLane - объединяет машинное обучение и квантовое программирование. Она позволяет пользователям создавать самонастраиваемые квантовые алгоритмы и исследовать преимущества квантовых вычислений в задачах машинного обучения.

ProjectQ - это открытая платформа для квантовых вычислений, которая позволяет пользователям реализовывать и симулировать квантовые алгоритмы, и включает в себя интерфейсы для различных квантовых процессоров.

QuTiP - предоставляет инструменты для моделирования квантовых систем и является незаменимым инструментом для исследователей квантовой механики и квантовой оптики.

PyQuil - это библиотека для написания квантовых программ с помощью языка квантового программирования Quil, разработанного Rigetti Computing. Поддерживает симуляцию и выполнение программ на реальных квантовых процессорах.

Tequila - это инструмент для создания квантовых алгоритмов с интеграцией в PyTorch и TensorFlow, который позволяет больше акцентировать внимание на квантовых вычислениях в контексте глубокого обучения.

Strawberry Fields предлагает платформу для создания и симуляции квантовых алгоритмов с использованием квантовых битов и квантовой оптики. Подходит для работы с квантовыми сетями и визуализацией в квантовых схемах.

Q# - это язык программирования от Microsoft для квантовых вычислений, который также предоставляет библиотеки, намеренные упростить разработку и выполнение квантовых алгоритмов в Azure Quantum.

Quirk — это онлайн-интерфейс для визуального проектирования и анализа квантовых схем, который позволяет легко экспериментировать с различными квантовыми логическими элементами.

#quantum #python #ai

@pythonl
🔥14👍72
Forwarded from Machinelearning
⚡️ BRIA Background Removal v2.0 Model.

RMBG v2.0 - новая модель удаления фона, предназначенная для эффективного отделения переднего плана от фона в различных категориях и типах изображений. Точность, эффективность и универсальность RMBG v2.0 конкурирует с ведущими SOTA-моделями.

RMBG-2.0 разработана на основе архитектуры BiRefNet и обучена на более чем 15 000 высококачественных, высокого разрешения, вручную маркированных (с точностью до пикселя), полностью лицензированных изображений.

Модель доступна на HF в двух версиях : pytorch и safetensors. Демо можно попробовать на HF Space.

▶️Пример кода запуска на Transformers:

from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
model.to('cuda')
model.eval()

# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

image = Image.open(input_image_path)
input_images = transform_image(image).unsqueeze(0).to('cuda')

# Prediction
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)

image.save("no_bg_image.png")


📌Лицензирование:

🟢Некоммерческое использование: Creative Commons license
🟠Коммерческое использование: на основании коммерческого соглашения с BRIA


🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #BiRefNet #RMBG #BRIAAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1710🔥5
Forwarded from Machinelearning
🌟 cuPyNumeric: замена NumPy от NVIDIA.

По мере роста объемов данных и сложности вычислений, вычисления на Python и NumPy, основанные на CPU, нуждаются в ускорении для выполнения современных исследований.

cuPyNumeric разработана, чтобы стать заменой библиотеки NumPy, предоставляя сообществу Python распределенные и ускоренные вычисления на платформе NVIDIA. cuPyNumeric позволяет масштабировать вычисления без изменения кода проектов с одного CPU до суперкомпьютеров с несколькими GPU и вычислительными нодами.

Библиотека построена на Legate, поддерживает родной Python и интерфейс NumPy. cuPyNumeric доступен из conda (версия не ниже 24.1) в legate channel. На системах с GPU пакеты, поддерживающие графические ускорители будут выбраны автоматически во время установки.

Пример эффективности cuPyNumeric - обработка 10 ТБ микроизображений многоракурсной микроскопии в виде одного массива NumPy за один день с визуализаций в режиме реального времени.

▶️Установка и тест на примере из репозитория:

# Create new conda env
conda create -n myenv -c conda-forge -c legate cupynumeric

# Test via example from repo
$ legate examples/black_scholes.py
Running black scholes on 10K options...
Elapsed Time: 129.017 ms


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #NumPy #NVIDIA #cuPyNumeric
Please open Telegram to view this post
VIEW IN TELEGRAM
👍138🔥3
Forwarded from Machinelearning
⚡️ TRELLIS: универсальная модель для генерации 3D-контента от Microsoft.

TRELLIS - модель для создания высококачественных 3D-объектов на основе текстового промпта или изображения с помощью унифицированного представления Structured LATent (SLAT), которое декодирует данные в форматы: Radiance Fields, 3D-гауссианы и полигональные сетки.

SLAT обладает универсальностью, используя комбинацию из разреженной 3D-сетки и плотных визуальных признаков, извлеченных моделью DINOv2 из входного изображения.

TRELLIS использует модифицированные rectified flow transformers, адаптированные для работы с SLAT. Обучение набора моделей TRELLIS, размерами до 2 млрд. параметров, выполнялось на датасете из 500 тыс. разнообразных 3D-объектов.

Пока в открытый доступ опубликована только Image-to-3D версия - TRELLIS-image-large с 1.2 млрд. параметров. Остальные вариации модели для генерации 3D по тексту: TRELLIS-text-base (342М), TRELLIS-text-large (1.1В) и TRELLIS-text-xlarge (2В) и код для их трейна будут представлены позже (сроки не указаны).

⚠️ Для локального запуска TRELLIS-image-large рекомендуется NVIDIA GPU с VRAM 16GB или больше.

▶️Установка и запуск c WebUI (Gradio):

# Clone repo
git clone --recurse-submodules https://github.com/microsoft/TRELLIS.git
cd TRELLIS

# Create conda env and install dependencies
. ./setup.sh --new-env --basic --flash-attn --diffoctreerast --spconv
--mipgaussian --kaolin --nvdiffrast

# Install web demo via Gradio
. ./setup.sh --demo

# Run WebUI
python app.py


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ImageTo3D #Trellis #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍76