⚡️ Ускорь проверку качества кода в 10 раз с помощью pre-commit!
В серьезных проектах чистота и стиль кода — но ручные проверки отнимают кучу времени, которое лучше потратить на анализ данных.
💡 Решение: автоматизируй всё с помощью pre-commit хуков — и пусть код проверяется сам перед каждым коммитом.
😬 Без pre-commit:
Вы коммитите код — всё выглядит нормально.
Но потом на ревью находят кучу мелочей:
✖️ Нет type hints
✖️ Форматирование пляшет
✖️ Отсутствует docstring
✖️ Импорты в разнобой
🤖 С pre-commit всё иначе:
Перед коммитом автоматически запускается
✅ Код отформатирован
✅ Стиль и правила соблюдены
✅ Меньше замечаний на ревью
💡 Один раз настроил — и больше не паришься с форматированием вручную.
Идеально для любого Python-проекта.
@pythonl
В серьезных проектах чистота и стиль кода — но ручные проверки отнимают кучу времени, которое лучше потратить на анализ данных.
💡 Решение: автоматизируй всё с помощью pre-commit хуков — и пусть код проверяется сам перед каждым коммитом.
😬 Без pre-commit:
Вы коммитите код — всё выглядит нормально.
Но потом на ревью находят кучу мелочей:
✖️ Нет type hints
✖️ Форматирование пляшет
✖️ Отсутствует docstring
✖️ Импорты в разнобой
🤖 С pre-commit всё иначе:
Перед коммитом автоматически запускается
ruff format
и ruff check
:✅ Код отформатирован
✅ Стиль и правила соблюдены
✅ Меньше замечаний на ревью
💡 Один раз настроил — и больше не паришься с форматированием вручную.
Идеально для любого Python-проекта.
@pythonl
❤12👍7🔥5
🚀 Kreuzberg — мощный фреймворк Document Intelligence для Python!
🔹 Извлекает текст, метаданные и структурированные данные из PDF, Office-документов, изображений и др.
🔹 Основан на проверенных open-source решениях: Pandoc, PDFium, Tesseract
🔹 Поддержка 18 форматов (PDF, DOCX, PPTX, HTML, изображения, таблицы и пр.)
🔹 Высокая производительность: 30+ документов/с, лёгкий runtime (≈360 МБ), установка 71 МБ
🔹 Открытый исходный код под MIT-лицензией, 2 000⭐ на GitHub
GitHub
Пример:
✨ Попробуйте: https://github.com/Goldziher/kreuzberg
@pythonl
#Python #OCR #DocumentIntelligence #OpenSource #Kreuzberg
🔹 Извлекает текст, метаданные и структурированные данные из PDF, Office-документов, изображений и др.
🔹 Основан на проверенных open-source решениях: Pandoc, PDFium, Tesseract
🔹 Поддержка 18 форматов (PDF, DOCX, PPTX, HTML, изображения, таблицы и пр.)
🔹 Высокая производительность: 30+ документов/с, лёгкий runtime (≈360 МБ), установка 71 МБ
🔹 Открытый исходный код под MIT-лицензией, 2 000⭐ на GitHub
GitHub
Пример:
from kreuzberg import extract_file
# In your async function
result = await extract_file("presentation.pptx")
print(result.content)
# Rich metadata extraction
print(f"Title: {result.metadata.title}")
print(f"Author: {result.metadata.author}")
print(f"Page count: {result.metadata.page_count}")
print(f"Created: {result.metadata.created_at}")
✨ Попробуйте: https://github.com/Goldziher/kreuzberg
@pythonl
#Python #OCR #DocumentIntelligence #OpenSource #Kreuzberg
🔥9❤5👍3