Python/ django
61.1K subscribers
2.16K photos
92 videos
48 files
2.88K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
⚡️ Ускорь проверку качества кода в 10 раз с помощью pre-commit!

В серьезных проектах чистота и стиль кода — но ручные проверки отнимают кучу времени, которое лучше потратить на анализ данных.

💡 Решение: автоматизируй всё с помощью pre-commit хуков — и пусть код проверяется сам перед каждым коммитом.

😬 Без pre-commit:

Вы коммитите код — всё выглядит нормально.
Но потом на ревью находят кучу мелочей:
✖️ Нет type hints
✖️ Форматирование пляшет
✖️ Отсутствует docstring
✖️ Импорты в разнобой

🤖 С pre-commit всё иначе:

Перед коммитом автоматически запускается ruff format и ruff check:
Код отформатирован
Стиль и правила соблюдены
Меньше замечаний на ревью

💡 Один раз настроил — и больше не паришься с форматированием вручную.
Идеально для любого Python-проекта.

@pythonl
12👍7🔥5
🚀 Kreuzberg — мощный фреймворк Document Intelligence для Python!

🔹 Извлекает текст, метаданные и структурированные данные из PDF, Office-документов, изображений и др.
🔹 Основан на проверенных open-source решениях: Pandoc, PDFium, Tesseract
🔹 Поддержка 18 форматов (PDF, DOCX, PPTX, HTML, изображения, таблицы и пр.)
🔹 Высокая производительность: 30+ документов/с, лёгкий runtime (≈360 МБ), установка 71 МБ
🔹 Открытый исходный код под MIT-лицензией, 2 000 на GitHub
GitHub

Пример:

from kreuzberg import extract_file

# In your async function
result = await extract_file("presentation.pptx")
print(result.content)

# Rich metadata extraction
print(f"Title: {result.metadata.title}")
print(f"Author: {result.metadata.author}")
print(f"Page count: {result.metadata.page_count}")
print(f"Created: {result.metadata.created_at}")


Попробуйте: https://github.com/Goldziher/kreuzberg

@pythonl

#Python #OCR #DocumentIntelligence #OpenSource #Kreuzberg
🔥95👍3