This media is not supported in your browser
VIEW IN TELEGRAM
Если вы хотите отсортировать список объектов (например, словарей или кортежей) сразу по нескольким критериям — например, сначала по возрасту по возрастанию, а затем по имени по убыванию — не нужно писать громоздкие функции.
Используйте
sorted()
с key
, комбинируя несколько полей с нужной логикой сортировки. Вот как:
people = [
{"name": "Alice", "age": 30},
{"name": "Bob", "age": 25},
{"name": "Charlie", "age": 25},
{"name": "David", "age": 30},
]
# Сортировка: сначала по age (по возрастанию), затем по name (по убыванию)
sorted_people = sorted(people, key=lambda p: (p["age"], -ord(p["name"][0])))
for person in sorted_people:
print(person)
💡 Работает и с объектами, и с кортежами — главное, правильно составить
key
. Особенно полезно для фильтрации списков в табличных данных, при выводе результатов или генерации отчётов.#python
Больше коротких уроков тут
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥26👍7❤6😢2
Transfunctions — это инструмент для создания чистых, переиспользуемых и управляемых пайплайнов из функций. Подходит для задач, где нужно чётко контролировать каждый шаг выполнения.
Что такое транзакционные функции?
Это функции, которые:
• имеют чёткое начало и откат (rollback) — как в базах данных
• могут быть объединены в цепочки, где каждая часть знает, как отменить свои действия
• обрабатывают ошибки и контекст централизованно
• позволяют писать бизнес-логику без дублирования и хаоса
Что умеет Transfunctions:
• Объединение функций в контролируемые пайплайны
• Поддержка отката и логирования
• Контекстное выполнение (например, сессии, транзакции, данные)
• Минимум шаблонного кода
Подходит для ETL, финансовых операций, инфраструктурных обработчиков и сценариев с проверками и откатами.
pip install transfunctions
🔗 GitHub: https://github.com/pomponchik/transfunctions
#python #pipeline #transactions #opensource #architecture
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍4🔥3😁1🤩1
🚀 Kreuzberg — мощный фреймворк Document Intelligence для Python!
🔹 Извлекает текст, метаданные и структурированные данные из PDF, Office-документов, изображений и др.
🔹 Основан на проверенных open-source решениях: Pandoc, PDFium, Tesseract
🔹 Поддержка 18 форматов (PDF, DOCX, PPTX, HTML, изображения, таблицы и пр.)
🔹 Высокая производительность: 30+ документов/с, лёгкий runtime (≈360 МБ), установка 71 МБ
🔹 Открытый исходный код под MIT-лицензией, 2 000⭐ на GitHub
GitHub
Пример:
✨ Попробуйте: https://github.com/Goldziher/kreuzberg
@pythonl
#Python #OCR #DocumentIntelligence #OpenSource #Kreuzberg
🔹 Извлекает текст, метаданные и структурированные данные из PDF, Office-документов, изображений и др.
🔹 Основан на проверенных open-source решениях: Pandoc, PDFium, Tesseract
🔹 Поддержка 18 форматов (PDF, DOCX, PPTX, HTML, изображения, таблицы и пр.)
🔹 Высокая производительность: 30+ документов/с, лёгкий runtime (≈360 МБ), установка 71 МБ
🔹 Открытый исходный код под MIT-лицензией, 2 000⭐ на GitHub
GitHub
Пример:
from kreuzberg import extract_file
# In your async function
result = await extract_file("presentation.pptx")
print(result.content)
# Rich metadata extraction
print(f"Title: {result.metadata.title}")
print(f"Author: {result.metadata.author}")
print(f"Page count: {result.metadata.page_count}")
print(f"Created: {result.metadata.created_at}")
✨ Попробуйте: https://github.com/Goldziher/kreuzberg
@pythonl
#Python #OCR #DocumentIntelligence #OpenSource #Kreuzberg
🔥13❤5👍4