Хочешь не просто пописать код, а взорвать мозг? Вот 5 уникальных идей, которые объединяют ИИ, терминальные интерфейсы, сетевое взаимодействие и системное программирование. Каждый проект можно собрать за 1–2 дня, если знаешь, с какой стороны подойти.
🧠 1. Self-Healing CLI‑агент (автоматический отладчик ошибок)
🔹 Идея: Напиши CLI-инструмент, который анализирует ошибки в Python‑скриптах и предлагает (или вносит) правки к коду автоматически с помощью LLM.
🔧 Как реализовать:
• Используй
subprocess
для запуска целевого скрипта и перехвата stderr • Извлеки traceback → отправь в OpenAI / LM Studio через API
• Получи фикс → распарси результат и применяй его к AST с помощью
RedBaron
или ast
• Верифицируй: перезапусти код и проверь, исчезла ли ошибка
• Добавь флаг
--auto-fix
и интерактивный режим🧩 Применение: автопомощник в CI/CD, дебагер в редакторах, обучающий инструмент
📡 2. P2P-блокнот с mesh-синхронизацией
🔹 Идея: Заметки, которые синхронизируются без облака — через локальную сеть или Bluetooth, используя ZeroConf.
🔧 Как реализовать:
•
zeroconf
для автоматического обнаружения других устройств •
sqlite
как локальное хранилище + watchdog
для отслеживания изменений •
pynacl
для шифрования трафика • Используй TCP/UDP сокеты для передачи изменений
• Можно добавить визуальный CLI с
urwid
или textual
🧩 Применение: приватные P2P‑заметки, оффлайн-заметки в экспедициях, лайтовый knowledge base
🧬 3. AI‑отладчик чужого репозитория
🔹 Идея: Инструмент, который загружает чужой репозиторий, строит граф зависимостей и автоматически находит баги, недочёты, недокументированный код — и объясняет их.
🔧 Как реализовать:
•
gitpython
для клонирования проекта •
networkx
или pydeps
для визуализации модульной структуры •
mypy
, flake8
, pylint
и bandit
для анализа • Сводка отправляется в LLM (например, OpenAI API) для пояснений: "вот потенциально уязвимый участок, вот почему"
• Визуализируй через
rich
, graphviz
, или в браузере через streamlit
🧩 Применение: ревью чужого кода, onboarding новых участников в open-source
🎮 4. CLI-игра с live‑физикой прямо в терминале
🔹 Идея: Реализуй рогалик или простую 2D-игру с настоящей физикой (гравитацией, столкновениями) в терминале.
🔧 Как реализовать:
•
curses
или blessed
для отрисовки •
pymunk
или box2d
для физики (адаптируй под 2D-сцену) • Все объекты — текстовые символы
• События обрабатываются через
asyncio
, и всё должно работать в real‑time • Можно добавить оружие, отскоки, ловушки и интерактивные зоны
🧩 Применение: визуальное развлечение, обучение физике, красивое демо для хакатона
🕵️ 5. AI-инспектор Linux-системы
🔹 Идея: Создай скрипт, который в реальном времени следит за файлами, сетями, процессами, и при странной активности — показывает, почему это может быть подозрительно (с пояснением от ИИ).
🔧 Как реализовать:
• Используй
psutil
, inotify
, socket
, netifaces
• Собирай метрики: кто пишет в
/tmp
, кто открывает нестандартные порты, кто занимает слишком много CPU • Фильтруй необычные события → формируй контекст → передавай в LLM
• ИИ объясняет: "этот процесс пытается слушать порт 4444 в фоне — это может быть реверс‑шелл"
• CLI-интерфейс через
rich
или textual
🧩 Применение: оффлайн-альтернатива Falcon / CrowdStrike, полезный тул
💡 Всё это можно собрать за 1–2 дня, если уже умеешь работать с Python-инструментами, API и системными вызовами. И каждый проект можно расширять в полноценный open-source продукт.
@pythonl
#python #weekendprojects #ai #cli #sysadmin #funprojects #hackathon #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
❤21👍5🔥5
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📓🦙 NotebookLlama — open-source альтернатива NotebookLM!
Практически полный функционал NotebookLM — в опенсорсе.
✔️ Собирает базу знаний из документов — с точным разбором через LlamaCloud
✔️ Автоматически пишет резюме и строит mind map-графы
✔️ Позволяет генерировать подкасты (работает на базе ElevenLabs)
✔️ Позволяет вести чат с агентом по документам
✔️ Метрики и аналитика через opentelemetry
🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.
Установка:
▪GitHub: https://github.com/run-llama/notebookllama
▪Попробовать в LlamaCloud: https://cloud.llamaindex.ai
@ai_machinelearning_big_data
#AI #ML #LLM #opensource #NotebookLM
Практически полный функционал NotebookLM — в опенсорсе.
🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.
Установка:
git clone https://github.com/run-llama/notebookllama
▪GitHub: https://github.com/run-llama/notebookllama
▪Попробовать в LlamaCloud: https://cloud.llamaindex.ai
@ai_machinelearning_big_data
#AI #ML #LLM #opensource #NotebookLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍5🔥3🤩2
Transfunctions — это инструмент для создания чистых, переиспользуемых и управляемых пайплайнов из функций. Подходит для задач, где нужно чётко контролировать каждый шаг выполнения.
Что такое транзакционные функции?
Это функции, которые:
• имеют чёткое начало и откат (rollback) — как в базах данных
• могут быть объединены в цепочки, где каждая часть знает, как отменить свои действия
• обрабатывают ошибки и контекст централизованно
• позволяют писать бизнес-логику без дублирования и хаоса
Что умеет Transfunctions:
• Объединение функций в контролируемые пайплайны
• Поддержка отката и логирования
• Контекстное выполнение (например, сессии, транзакции, данные)
• Минимум шаблонного кода
Подходит для ETL, финансовых операций, инфраструктурных обработчиков и сценариев с проверками и откатами.
pip install transfunctions
🔗 GitHub: https://github.com/pomponchik/transfunctions
#python #pipeline #transactions #opensource #architecture
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍4🔥3😁1🤩1
🚀 Kreuzberg — мощный фреймворк Document Intelligence для Python!
🔹 Извлекает текст, метаданные и структурированные данные из PDF, Office-документов, изображений и др.
🔹 Основан на проверенных open-source решениях: Pandoc, PDFium, Tesseract
🔹 Поддержка 18 форматов (PDF, DOCX, PPTX, HTML, изображения, таблицы и пр.)
🔹 Высокая производительность: 30+ документов/с, лёгкий runtime (≈360 МБ), установка 71 МБ
🔹 Открытый исходный код под MIT-лицензией, 2 000⭐ на GitHub
GitHub
Пример:
✨ Попробуйте: https://github.com/Goldziher/kreuzberg
@pythonl
#Python #OCR #DocumentIntelligence #OpenSource #Kreuzberg
🔹 Извлекает текст, метаданные и структурированные данные из PDF, Office-документов, изображений и др.
🔹 Основан на проверенных open-source решениях: Pandoc, PDFium, Tesseract
🔹 Поддержка 18 форматов (PDF, DOCX, PPTX, HTML, изображения, таблицы и пр.)
🔹 Высокая производительность: 30+ документов/с, лёгкий runtime (≈360 МБ), установка 71 МБ
🔹 Открытый исходный код под MIT-лицензией, 2 000⭐ на GitHub
GitHub
Пример:
from kreuzberg import extract_file
# In your async function
result = await extract_file("presentation.pptx")
print(result.content)
# Rich metadata extraction
print(f"Title: {result.metadata.title}")
print(f"Author: {result.metadata.author}")
print(f"Page count: {result.metadata.page_count}")
print(f"Created: {result.metadata.created_at}")
✨ Попробуйте: https://github.com/Goldziher/kreuzberg
@pythonl
#Python #OCR #DocumentIntelligence #OpenSource #Kreuzberg
🔥13❤5👍4