🎨 MonsterUI — стильный UI для FastHTML на Python (от Answer.AI)
MonsterUI — это высокоуровневый слой поверх FastHTML, который позволяет быстро создавать красивые веб-интерфейсы на чистом Python без писанины HTML/CSS.
⚙️ Проблема
FastHTML и так упрощает фронтенд, но стильность UI требует громоздких классов или CSS-фреймворков (Tailwind, Bootstrap).
MonsterUI решает это, предоставляя готовые компоненты и умные настройки по умолчанию.
✨ Главные возможности
• Полюбившиеся Tailwind/FrankenUI/DaisyUI скрылки под капотом
• Удобные базовые компоненты:
• Семантический текст и стили (H1, P, Blockquote, etc.), оформленные по умолчанию
• Умные layout-хелперы:
• «Высокоуровневые» компоненты: навбар, модалка, таблицы — готовые шаблоны
• Автоматический рендер Markdown и подсветка кода
• Темы с выбором цветовой схемы, поддержкой light/dark режимов
🚀 Пример компонента
Всё чисто, семантично, без CSS-уродства и классов.
🔧 Старт
✅ Преимущества:
• Быстрый старт с современным UI
• Чистый, читаемый Python-код
• Гибкость в кастомизации через Tailwind
• Подтверждённая пригодность в продакшене
🔗 Подробнее: https://www.answer.ai/posts/2025/01/15/monsterui.html
@pythonl
#Python #WebDev #FastHTML #MonsterUI #Tailwind #HTMX #UI #OpenSource
MonsterUI — это высокоуровневый слой поверх FastHTML, который позволяет быстро создавать красивые веб-интерфейсы на чистом Python без писанины HTML/CSS.
⚙️ Проблема
FastHTML и так упрощает фронтенд, но стильность UI требует громоздких классов или CSS-фреймворков (Tailwind, Bootstrap).
MonsterUI решает это, предоставляя готовые компоненты и умные настройки по умолчанию.
✨ Главные возможности
• Полюбившиеся Tailwind/FrankenUI/DaisyUI скрылки под капотом
• Удобные базовые компоненты:
Button
, Card
, LabelInput
и др. • Семантический текст и стили (H1, P, Blockquote, etc.), оформленные по умолчанию
• Умные layout-хелперы:
DivVStacked
, Grid
, DivFullySpaced
и другие • «Высокоуровневые» компоненты: навбар, модалка, таблицы — готовые шаблоны
• Автоматический рендер Markdown и подсветка кода
• Темы с выбором цветовой схемы, поддержкой light/dark режимов
🚀 Пример компонента
def TeamCard(name, role, location="Remote"):
icons = ("mail", "linkedin", "github")
return Card(
DivLAligned(
DiceBearAvatar(name, h=24, w=24),
Div(H3(name), P(role))),
footer=DivFullySpaced(
DivHStacked(UkIcon("map-pin", height=16), P(location)),
DivHStacked(*(UkIconLink(icon, height=16) for icon in icons))))
Всё чисто, семантично, без CSS-уродства и классов.
🔧 Старт
pip install MonsterUI
from fasthtml.common import *
from monsterui.all import *
app, rt = fast_app(hdrs=Theme.blue.headers())
@rt
def index():
return Card(H1("Hello MonsterUI"), P("Приложение готово!"))
serve()
✅ Преимущества:
• Быстрый старт с современным UI
• Чистый, читаемый Python-код
• Гибкость в кастомизации через Tailwind
• Подтверждённая пригодность в продакшене
🔗 Подробнее: https://www.answer.ai/posts/2025/01/15/monsterui.html
@pythonl
#Python #WebDev #FastHTML #MonsterUI #Tailwind #HTMX #UI #OpenSource
❤12👍8🔥3😁2🤩1
Хочешь не просто пописать код, а взорвать мозг? Вот 5 уникальных идей, которые объединяют ИИ, терминальные интерфейсы, сетевое взаимодействие и системное программирование. Каждый проект можно собрать за 1–2 дня, если знаешь, с какой стороны подойти.
🧠 1. Self-Healing CLI‑агент (автоматический отладчик ошибок)
🔹 Идея: Напиши CLI-инструмент, который анализирует ошибки в Python‑скриптах и предлагает (или вносит) правки к коду автоматически с помощью LLM.
🔧 Как реализовать:
• Используй
subprocess
для запуска целевого скрипта и перехвата stderr • Извлеки traceback → отправь в OpenAI / LM Studio через API
• Получи фикс → распарси результат и применяй его к AST с помощью
RedBaron
или ast
• Верифицируй: перезапусти код и проверь, исчезла ли ошибка
• Добавь флаг
--auto-fix
и интерактивный режим🧩 Применение: автопомощник в CI/CD, дебагер в редакторах, обучающий инструмент
📡 2. P2P-блокнот с mesh-синхронизацией
🔹 Идея: Заметки, которые синхронизируются без облака — через локальную сеть или Bluetooth, используя ZeroConf.
🔧 Как реализовать:
•
zeroconf
для автоматического обнаружения других устройств •
sqlite
как локальное хранилище + watchdog
для отслеживания изменений •
pynacl
для шифрования трафика • Используй TCP/UDP сокеты для передачи изменений
• Можно добавить визуальный CLI с
urwid
или textual
🧩 Применение: приватные P2P‑заметки, оффлайн-заметки в экспедициях, лайтовый knowledge base
🧬 3. AI‑отладчик чужого репозитория
🔹 Идея: Инструмент, который загружает чужой репозиторий, строит граф зависимостей и автоматически находит баги, недочёты, недокументированный код — и объясняет их.
🔧 Как реализовать:
•
gitpython
для клонирования проекта •
networkx
или pydeps
для визуализации модульной структуры •
mypy
, flake8
, pylint
и bandit
для анализа • Сводка отправляется в LLM (например, OpenAI API) для пояснений: "вот потенциально уязвимый участок, вот почему"
• Визуализируй через
rich
, graphviz
, или в браузере через streamlit
🧩 Применение: ревью чужого кода, onboarding новых участников в open-source
🎮 4. CLI-игра с live‑физикой прямо в терминале
🔹 Идея: Реализуй рогалик или простую 2D-игру с настоящей физикой (гравитацией, столкновениями) в терминале.
🔧 Как реализовать:
•
curses
или blessed
для отрисовки •
pymunk
или box2d
для физики (адаптируй под 2D-сцену) • Все объекты — текстовые символы
• События обрабатываются через
asyncio
, и всё должно работать в real‑time • Можно добавить оружие, отскоки, ловушки и интерактивные зоны
🧩 Применение: визуальное развлечение, обучение физике, красивое демо для хакатона
🕵️ 5. AI-инспектор Linux-системы
🔹 Идея: Создай скрипт, который в реальном времени следит за файлами, сетями, процессами, и при странной активности — показывает, почему это может быть подозрительно (с пояснением от ИИ).
🔧 Как реализовать:
• Используй
psutil
, inotify
, socket
, netifaces
• Собирай метрики: кто пишет в
/tmp
, кто открывает нестандартные порты, кто занимает слишком много CPU • Фильтруй необычные события → формируй контекст → передавай в LLM
• ИИ объясняет: "этот процесс пытается слушать порт 4444 в фоне — это может быть реверс‑шелл"
• CLI-интерфейс через
rich
или textual
🧩 Применение: оффлайн-альтернатива Falcon / CrowdStrike, полезный тул
💡 Всё это можно собрать за 1–2 дня, если уже умеешь работать с Python-инструментами, API и системными вызовами. И каждый проект можно расширять в полноценный open-source продукт.
@pythonl
#python #weekendprojects #ai #cli #sysadmin #funprojects #hackathon #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
❤20👍5🔥5
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📓🦙 NotebookLlama — open-source альтернатива NotebookLM!
Практически полный функционал NotebookLM — в опенсорсе.
✔️ Собирает базу знаний из документов — с точным разбором через LlamaCloud
✔️ Автоматически пишет резюме и строит mind map-графы
✔️ Позволяет генерировать подкасты (работает на базе ElevenLabs)
✔️ Позволяет вести чат с агентом по документам
✔️ Метрики и аналитика через opentelemetry
🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.
Установка:
▪GitHub: https://github.com/run-llama/notebookllama
▪Попробовать в LlamaCloud: https://cloud.llamaindex.ai
@ai_machinelearning_big_data
#AI #ML #LLM #opensource #NotebookLM
Практически полный функционал NotebookLM — в опенсорсе.
🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.
Установка:
git clone https://github.com/run-llama/notebookllama
▪GitHub: https://github.com/run-llama/notebookllama
▪Попробовать в LlamaCloud: https://cloud.llamaindex.ai
@ai_machinelearning_big_data
#AI #ML #LLM #opensource #NotebookLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍4🔥3🤩2