🛡 StarGuard — умный аудит GitHub-репозиториев прямо из консоли
Открытый проект — это мощный CLI-инструмент на Python, который автоматически анализирует open-source репозитории и помогает выявить:
🔸 фальшивые звёзды
🔸 всплески активности
🔸 опасные зависимости
🔸 лицензии с подвохом
🔸 подозрительный код и токсичных контрибьюторов
📊 Что делает StarGuard
✅ Обнаруживает аномалии звёзд
— Вычисляет резкие всплески популярности с помощью BurstDetector и медианного отклонения.
— Определяет подозрительных пользователей с «пустыми» профилями и новыми аккаунтами.
✅ Анализирует зависимости и SBOM
— Поддержка PyPI, npm, Maven, Go, Ruby
— Предупреждает об unpinned-пакетах и git-зависимостях
✅ Проверяет лицензии
— Выявляет несовместимости (например, AGPL внутри MIT)
— Предупреждает о скрытых ограничениях
✅ Оценивает контрибьюторов
— Проверяет концентрацию коммитов
— Определяет "одиночек", на которых держится проект
✅ Сканирует код на опасные паттерны
— Обнаруживает
🚀 Как использовать
🔹 Без GitHub-токена работает, но лимит — 60 запросов/час
🔹 С
🎯 Кому полезно
• DevOps-командам — для верификации OSS-зависимостей
• Безопасникам — для быстрой проверки на supply chain угрозы
• Инвесторам — чтобы не попасть на проекты с "накрученной" популярностью
• Open Source авторам — для прозрачности и Trust Badge
🔗 GitHub
💡 Инструмент, который показывает, что за красивыми графиками звёзд часто стоит маркетинг, а не код. Умей фильтровать — ставь охрану у репозитория.
@pythonl
Открытый проект — это мощный CLI-инструмент на Python, который автоматически анализирует open-source репозитории и помогает выявить:
🔸 фальшивые звёзды
🔸 всплески активности
🔸 опасные зависимости
🔸 лицензии с подвохом
🔸 подозрительный код и токсичных контрибьюторов
📊 Что делает StarGuard
✅ Обнаруживает аномалии звёзд
— Вычисляет резкие всплески популярности с помощью BurstDetector и медианного отклонения.
— Определяет подозрительных пользователей с «пустыми» профилями и новыми аккаунтами.
✅ Анализирует зависимости и SBOM
— Поддержка PyPI, npm, Maven, Go, Ruby
— Предупреждает об unpinned-пакетах и git-зависимостях
✅ Проверяет лицензии
— Выявляет несовместимости (например, AGPL внутри MIT)
— Предупреждает о скрытых ограничениях
✅ Оценивает контрибьюторов
— Проверяет концентрацию коммитов
— Определяет "одиночек", на которых держится проект
✅ Сканирует код на опасные паттерны
— Обнаруживает
eval
, скрытые майнеры, необфусцированные ключи🚀 Как использовать
python -m starguard.cli owner/repo --format markdown --plot stars.png
🔹 Без GitHub-токена работает, но лимит — 60 запросов/час
🔹 С
GITHUB_TOKEN
— до 5000 запросов🎯 Кому полезно
• DevOps-командам — для верификации OSS-зависимостей
• Безопасникам — для быстрой проверки на supply chain угрозы
• Инвесторам — чтобы не попасть на проекты с "накрученной" популярностью
• Open Source авторам — для прозрачности и Trust Badge
🔗 GitHub
💡 Инструмент, который показывает, что за красивыми графиками звёзд часто стоит маркетинг, а не код. Умей фильтровать — ставь охрану у репозитория.
@pythonl
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 DeerFlow — Open‑Source фреймворк для Deep Research от ByteDance
🌟 Что такое DeerFlow?
DeerFlow (Deep Exploration and Efficient Research Flow) — это модульный multi-agent фреймворк с открытым исходным кодом, созданный для автоматизации глубоких исследовательских процессов. Он сочетает работу с LLM, веб-поиск, краулинг и выполнение Python-кода :contentReference[oaicite:0]{index=0}.
🧱 Основные особенности
- Multi-agent архитектура
Координатор, Планировщик, Исследователь, Кодер, Репортер и даже голосовой модуль — каждый агент выполняет свою задачу в пайплайне исследования :contentReference[oaicite:1]{index=1}.
- Интеграция инструментов
Встроенный веб-поиск (Tavily, DuckDuckGo, Brave, arXiv), web scraping через Jina, Python REPL для исполнения кода, генерация отчетов и даже автоматизированные подкасты при помощи TTS :contentReference[oaicite:2]{index=2}.
- Human‑in‑the‑loop
Возможность ставить задачи и править планы вручную — обеспечивается контроль на каждом этапе :contentReference[oaicite:3]{index=3}.
- Генерация конечного контента
Полученные данные консолидируются в отчеты (Markdown, PPT), синтезируются в речь (подкасты), экспортируются — всё автономно.
⚙️ Github
@pythonl
🌟 Что такое DeerFlow?
DeerFlow (Deep Exploration and Efficient Research Flow) — это модульный multi-agent фреймворк с открытым исходным кодом, созданный для автоматизации глубоких исследовательских процессов. Он сочетает работу с LLM, веб-поиск, краулинг и выполнение Python-кода :contentReference[oaicite:0]{index=0}.
🧱 Основные особенности
- Multi-agent архитектура
Координатор, Планировщик, Исследователь, Кодер, Репортер и даже голосовой модуль — каждый агент выполняет свою задачу в пайплайне исследования :contentReference[oaicite:1]{index=1}.
- Интеграция инструментов
Встроенный веб-поиск (Tavily, DuckDuckGo, Brave, arXiv), web scraping через Jina, Python REPL для исполнения кода, генерация отчетов и даже автоматизированные подкасты при помощи TTS :contentReference[oaicite:2]{index=2}.
- Human‑in‑the‑loop
Возможность ставить задачи и править планы вручную — обеспечивается контроль на каждом этапе :contentReference[oaicite:3]{index=3}.
- Генерация конечного контента
Полученные данные консолидируются в отчеты (Markdown, PPT), синтезируются в речь (подкасты), экспортируются — всё автономно.
⚙️ Github
@pythonl