Если вы работали с современными фронтенд-фреймворками, такими как React, Vue или Angular, вы знакомы с мощью реактивного управления состояниями.
Это магия, лежащая в основе динамических пользовательских интерфейсов и систем реального времени.
Но почему Python должен упускать преимущества реактивности? reaktiv привносит эти преимущества реактивного программирования в ваши Python-проекты.
pip install reaktiv
▪Github
@pythonl
#python #frontend #react #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Surprise
Создание надежной рекомендательной системы с нуля может занять много времени и большого объема кода.
Surprise упрощает процесс и позволяет создавать рекомендательные системы с минимальным кодом, предоставляя встроенные алгоритмы, готовый датасет и встроенную оценку модели.
▪ Github
▪ Пример
@pythonl
Создание надежной рекомендательной системы с нуля может занять много времени и большого объема кода.
Surprise упрощает процесс и позволяет создавать рекомендательные системы с минимальным кодом, предоставляя встроенные алгоритмы, готовый датасет и встроенную оценку модели.
▪ Github
▪ Пример
@pythonl
Это самая популярная в мире библиотека обработки данных, но она медленная, и многие библиотеки значительно превзошли ее.
Проблема альтернатив Pandas в том, что никто не хочет изучать новый API.
Давайте посмотрим правде в глаза: люди не будут переносить свои проекты, га другие фреймворки, без особой причины.
Я уже давно работаю с FireDucks
Эта библиотека в разы быстрее Pandas, и вам не придется менять код старых проектов для перехода на нее.
Вы можете изменить *одну* строку кода и весь остальной код будет работать на FireDucks :
import fireducks.pandas as pd
Вы также можете запустить свой код *не* изменяя ни одной строки, используя хук:
python
$ python -mfireducks.imhook yourfile[.]py
FireDucks — это многопоточная библиотека с ускорением компилятора и полностью совместимым с pandas API.
Она быстрее, чем Polars. Ниже приведена ссылка на некоторые бенчмарки, сравнивающие Pandas, Polars и FireDucks.
FireDucks побеждает с отрывом.
⛓️Здесь находится репозиторий FireDucks на GitHub:
https://github.com/fireducks-dev/fireducks
⛓️Если вы хотите пощупать либу, откройте этот пример:
https://github.com/fireducks-dev/fireducks/tree/main/notebooks/nyc_demo
⛓️Если вы хотите сравнить FireDucks с Polars и Pandas, вот еще один блокнот:
https://github.com/fireducks-dev/fireducks/blob/main/notebooks/FireDucks_vs_Pandas_vs_Polars.ipynb
⛓️И наконец, бенчмарки, с которыми стоит ознакомиться:
https://fireducks-dev.github.io/docs/benchmarks/
@pythonl
#fireducks #Pandas #dataanalysis #datascience #python #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔬MedRAX: новаторский ИИ-агент, разработанный для медицинских задач!
Что такое MedRAX?
MedRAX - это первый универсальный ИИ-агент, который объединяет современные инструменты для анализа рентгеновских снимков грудной клетки и мультимодальные большие языковые модели в единую структуру, позволяющую динамически обосновывать сложные медицинские запросы без дополнительного обучения.
🎯 Чем хорош именно MedRAX?
Хотя специализированные модели ИИ отлично справляются с конкретными задачами рентгенографии грудной клетки, они часто не справляются с комплексным анализом и могут выдавать неточные рекомендации . Многим медицинским работникам нужна единая, надежная система, способная обрабатывать сложные запросы, сохраняя при этом точность. MedRAX призван стать таким инструментом
🛠️ Интегрированные инструменты:
- Визуальный контроль качества: CheXagent и LLaVA-Med
- Сегментация: MedSAM & ChestX-Det
- Формирование отчетов: CheXpert Plus
- Классификация: TorchXRayVision
- Grounding Maira-2
- Синтетические данные: RoentGen
💡 Ключевые особенности:
- Бесшовная интеграция специализированных медицинских инструментов с мультимодальными рассуждениями на основе больших языковых моделей.
- Динамическая оркестровка: Интеллектуальный выбор и координация инструментов для сложных запросов.
- Клиническая направленность: Разработан для реальных медицинских процессов.
📊 ChestAgentBench:
Разработчики также выпустили ChestAgentBench, комплексный эталон медицинского агента, созданный на основе 675 клинических случаев, проверенных экспертами, и включающий 2500 сложных медицинских запросов по 7 категориям.
🎉 Результаты говорят сами за себя:
- 63,1% точности на ChestAgentBench
- Sota результативность на CheXbench
- Превосходит как универсальные, так и специализированные медицинские модели
▪Paper: https://arxiv.org/abs/2502.02673
▪Github: https://github.com/bowang-lab/MedRAX
@ai_machinelearning_big_data
#ai #agents #ml #opensource #med #medicine
Что такое MedRAX?
MedRAX - это первый универсальный ИИ-агент, который объединяет современные инструменты для анализа рентгеновских снимков грудной клетки и мультимодальные большие языковые модели в единую структуру, позволяющую динамически обосновывать сложные медицинские запросы без дополнительного обучения.
🎯 Чем хорош именно MedRAX?
Хотя специализированные модели ИИ отлично справляются с конкретными задачами рентгенографии грудной клетки, они часто не справляются с комплексным анализом и могут выдавать неточные рекомендации . Многим медицинским работникам нужна единая, надежная система, способная обрабатывать сложные запросы, сохраняя при этом точность. MedRAX призван стать таким инструментом
🛠️ Интегрированные инструменты:
- Визуальный контроль качества: CheXagent и LLaVA-Med
- Сегментация: MedSAM & ChestX-Det
- Формирование отчетов: CheXpert Plus
- Классификация: TorchXRayVision
- Grounding Maira-2
- Синтетические данные: RoentGen
💡 Ключевые особенности:
- Бесшовная интеграция специализированных медицинских инструментов с мультимодальными рассуждениями на основе больших языковых моделей.
- Динамическая оркестровка: Интеллектуальный выбор и координация инструментов для сложных запросов.
- Клиническая направленность: Разработан для реальных медицинских процессов.
📊 ChestAgentBench:
Разработчики также выпустили ChestAgentBench, комплексный эталон медицинского агента, созданный на основе 675 клинических случаев, проверенных экспертами, и включающий 2500 сложных медицинских запросов по 7 категориям.
🎉 Результаты говорят сами за себя:
- 63,1% точности на ChestAgentBench
- Sota результативность на CheXbench
- Превосходит как универсальные, так и специализированные медицинские модели
▪Paper: https://arxiv.org/abs/2502.02673
▪Github: https://github.com/bowang-lab/MedRAX
@ai_machinelearning_big_data
#ai #agents #ml #opensource #med #medicine
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
import shellingham
shell_name, shell_path = shellingham.detect_shell()
print(f"Shell: {shell_name}, Path: {shell_path}")
Лицензия: ISC
▪Github
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
• Кроссплатформенность: Не нужен Mac — можно запускать на любой системе.
• Функционал: Библиотека позволяет:
Получать и дешифровать отчёты о местоположении для официальных аксессуаров (AirTags, iDevices) и кастомных AirTags (OpenHaystack);
• Выполнять авторизацию Apple-аккаунта с поддержкой SMS и Trusted Device 2FA;
• Сканировать и декодировать информацию о близлежащих устройствах (публичные ключи, статус и т.д.);
• Импортировать или создавать собственные ключи аксессуаров.
• API: Доступны как асинхронные, так и синхронные варианты использования, что даёт гибкость при интеграции в проекты. • Как начать:
Установите пакет через PyPi:
pip install findmy
• Важно: Проект находится в стадии Alpha, поэтому API может измениться. Рекомендуется следить за обновлениями и сообщать о найденных проблемах в issue-трекере.Эта библиотека станет отличным инструментом для разработчиков, желающих интегрироваться в экосистему Apple FindMy без лишних сложностей!
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM