Python/ django
60.6K subscribers
2.12K photos
78 videos
48 files
2.86K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
⚔️ LIEF — мощная библиотека для работы с исполняемыми файлами, которая поддерживает ELF, PE и MachO-форматы. Этот проект позволяет не только анализировать структуру бинарников, но и модифицировать их — добавлять секции, менять символы или даже работать с Objective-C метаданными.

Инструмент выделяется кроссплатформенностью и мультиязычным API (Python, Rust, C++). Библиотека умеет дизассемблировать код под разные архитектуры и интегрируется с Ghidra/BinaryNinja. Будет полезно для реверс-инжиниринга, анализа вредоносного ПО или кастомной линковки.

🤖 GitHub

@pythonl
Общий сбор питонистов на митапе ЮMoney ™️

Питоняшки — бесплатный митап ЮMoney для Python-разработчиков.

3 июля, в четверг, в 19:00 (мск) — приходите на митап в Санкт-Петербурге или подключайтесь онлайн.

О чём будут доклады?

🟣 Это не те метрики, что вы ищете. Разберёмся, почему стандартного экспортёра может не хватать, и как написать свой на Python.
🟣 Кодогенерация: как компьютеры учатся писать код за нас. Поговорим про прошлое, настоящее и будущее кодогенерации в разных языках программирования.
🟣 Ruff: как не положить всё, переходя на новые правила? Поговорим про линтеры, форматтеры и подводные камни при переходе на Ruff.
🟣 Секреты успеха змеи в мире пауков. Обсудим, как мы применяли scrapy и playwright в ЮMoney, чтобы создать сервис модерации сайтов.

Зарегистрируйтесь, чтобы принять участие. Все подробности — на сайте митапа Питоняшки 🔥
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ PyOpenCL — ускоряем Python вычисления на GPU. Этот проект даёт доступ к технологии OpenCL прямо из Python, позволяя задействовать не только видеокарты, но и любые параллельные вычислительные устройства. Он сочетает низкоуровневый контроль с автоматической обработкой ошибок и привязкой жизненного цикла объектов.

Инструмент имеет обширную документацию с примерами: от простого поэлементного умножения массивов до сложных алгоритмов с использованием локальной памяти GPU. Проект работает с реализациями OpenCL от Apple, AMD и Nvidia, а установка через Conda занимает буквально пару команд.

🤖 GitHub

@pythonl
🧩 Задача для разминки

Что выведет этот код? Попробуй догадаться без запуска.


class Sneaky:
def __eq__(self, other):
print("Comparing!")
return True

a = Sneaky()
b = [a]

print(a in b)
print(a == b[0])
print(b.count(a))


🤔 Подумай: сколько раз вызовется eq?

🎯 Разбор:

print(a in b)
🔍 Проверка a in b вызывает b.__contains__(a), который по умолчанию использует ==.
👉 Вызовется eq, будет True.

print(a == b[0])
🔍 Прямое сравнение — снова eq.

print(b.count(a))
🔍 list.count сравнивает каждый элемент с ==. В нашем списке один элемент — a.
👉 Опять вызывается eq.

💥 Вывод будет:


Comparing!
True
Comparing!
True
Comparing!
1



📌 Вывод: __eq__ сработал 3 раза, и каждый раз напечатал "Comparing!".

🧠 Уловка: Python-списки используют ==, даже если это один и тот же объект! Да, a == a всё равно вызовет __eq__, если он определён.

⚠️ Фишка для интервью:
Можно подменить поведение ==, но is (сравнение идентичности) всегда быстрее и не вызывает магии.

@pythonl
🔥 CAI — ИИ для поиска багов от Alias Robotics

Что это такое?
CAI — лёгкий фреймворк для создания AI-агентов, которые помогают автоматизировать поиск и проверку уязвимостей.

Как это работает?
- Загружаете YAML-конфиги
Опишите сценарии поиска багов, тестов и отчётов в простых текстовых файлах.
- LLM-агенты
AI-модель эмулирует протоколы (SSH, HTTP, TCP и другие) и взаимодействует с целевыми системами как настоящий тестировщик.
- Генерация и «разогрев» данных
Создавайте синтетические запросы для обучения и быстро запускайте агента на своих данных.
- Оффлайн-оценка
Собирайте результаты тестов и анализируйте их без постоянного подключения к интернету.

Зачем использовать CAI?
- Ускоряет подготовку и запуск тестов безопасности
- Позволяет гибко настраивать шаги проверки
- Повышает прозрачность и повторяемость отчётов о найденных уязвимостях

Установка и запуск:

git clone https://github.com/aliasrobotics/cai.git
cd cai
# отредактируйте config.yaml и запустите агента


📌 Github

@pythonl
⚡️ Почему лучшие разработчики всегда на шаг впереди?

Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.

ИИ: t.me/ai_machinelearning_big_data
Python: t.me/pro_python_code
Linux: t.me/linuxacademiya
Devops: t.me/DevOPSitsec
Базы данных: t.me/sqlhub
Мл собес t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
МЛ: t.me/machinelearning_ru
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/java_library
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Физика: t.me/fizmat
SQL: t.me/databases_tg

Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🖥 Chatgpt для кода в тг: @Chatgpturbobot -

📕Ит-книги: https://yangx.top/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.me/addlist/_zyy_jQ_QUsyM2Vi

Подпишись, чтобы всегда знать, куда двигаться дальше!
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
📊 Vizro — low-code инструмент для создания дашбордов на Python. Интересный проект для аналитиков и дата-инженеров, позволяющий собирать интерактивные дашборды буквально в несколько строк кода. Основан на связке Plotly + Dash + Pydantic, но скрывает сложность за простым декларативным синтаксисом в JSON/YAML/Python-словарях.

Библиотека имеет встроенные best practices по визуализации данных и возможность кастомизировать всё через Python/JS, когда low-code возможностей недостаточно. Готовые дашборды выглядят профессионально и сразу готовы к продакшену.

🤖 GitHub

@pythonl
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📓🦙 NotebookLlama — open-source альтернатива NotebookLM!

Практически полный функционал NotebookLM — в опенсорсе.

✔️ Собирает базу знаний из документов — с точным разбором через LlamaCloud
✔️ Автоматически пишет резюме и строит mind map-графы
✔️ Позволяет генерировать подкасты (работает на базе ElevenLabs)
✔️ Позволяет вести чат с агентом по документам
✔️ Метрики и аналитика через opentelemetry

🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.

Установка:


git clone https://github.com/run-llama/notebookllama


GitHub: https://github.com/run-llama/notebookllama
Попробовать в LlamaCloud: https://cloud.llamaindex.ai

@ai_machinelearning_big_data


#AI #ML #LLM #opensource #NotebookLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👾 GREMLLM — теперь у ваших багов есть сознание

GREMLLM — это необычный Python-класс, в котором все методы и свойства создаются динамически с помощью LLM. Вы описываете, *что за объект вы хотите*, и дальше GREMLLM сам решает, что должно происходить при вызове методов или обращении к полям.

📦 Установка:

pip install gremllm


🔧 Пример:



from gremllm import Gremllm

counter = Gremllm('counter')
counter.value = 5
counter.increment()
print(counter.value) # → 6?
print(counter.to_roman_numerals()) # → VI?


🧩 Возможности:
– Динамическое поведение: всё определяется "на лету" с помощью LLM
– Поддержка OpenAI, Claude, Gemini, и локальных моделей
– Wet Mode: можно строить цепочки вызовов (методы возвращают объекты)
– Verbose Mode: выводит, какой код был сгенерирован
– Умная обработка ошибок и настройка через наследование

⚠️ Это экспериментальный инструмент. Не для продакшена. Но очень интересен для изучения LLM-интеграций в Python-код.

🔗 Репозиторий: https://github.com/ur-whitelab/gremllm

@pythonl
ML-инженеры, какая встреча!

19 июля в Москве снова пройдет Turbo ML Conf от группы Т-Технологий. В этом году — еще масштабнее!

В программе 5 тематических потоков, продовые кейсы и технологии.

Среди спикеров — эксперты Т-Банка, Сбера, Яндекса и других ведущих специалистов.

Будет много нетворкинга, прикладные доклады, настольные игры, лимитированный мерч. Участие бесплатное.

Успейте оставить заявку
Ускорь Python без переписывания — скомпилируй код в .so через Cython

Нужно ускорить медленные куски Python-кода (циклы, численные вычисления, парсинг)?

Не обязательно лезть в C или переписывать всё под NumPy. Можно взять свой .py`-файл, добавить одну строчку и превратить его в бинарный .so`‑модуль через Cython — без изменения логики.



# 1. Устанавливаем Cython и компилятор
pip install cython
sudo apt install build-essential

# 2. Переименовываем файл
mv myscript.py myscript.pyx

# 3. Создаём setup.py
echo '
from setuptools import setup
from Cython.Build import cythonize
setup(ext_modules=cythonize("myscript.pyx"))
' > setup.py

# 4. Компилируем
python3 setup.py build_ext --inplace

# 5. Используем как обычный модуль
python3 -c 'import myscript; myscript.main()'


@pythonl
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Ускорь import в Python-проектах с помощью lazy loading — без изменения логики

Если у тебя проект с тяжёлыми модулями (`pandas`, torch, tensorflow`), но они не всегда нужны — не загружай их зря. Python позволяет **отложить импорт до первого использования**, через встроённый `importlib.

Вот как это выглядит на практике:



import importlib

# Обёртка для ленивого импорта
def lazy_import(name):
return importlib.util.LazyLoader(importlib.import_module(name))

# Использование
np = lazy_import('numpy')
# numpy ещё не загружен

# Теперь загрузится:
print(np.array([1, 2, 3]))


@pythonl