Python/ django
60.9K subscribers
2.13K photos
82 videos
48 files
2.86K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
🖥 PUBG Cheat: мощный и скрытый инструментарий для исследований на Python

🔍 Что такое PUBG Cheat?
Это образовательный инстурментов для анализа работы PUBG с набором читов, включающий Aimbot, ESP, Wallhack, Radar, No Recoil и HWID Spoofer.

Работает на Windows 10/11, поддерживает Streamer Mode и идеально подходит для изучения внутренней механики игры. Предназначен для исследований безопасности, а не для нарушения правил игры.

🎯 Особенности Aimbot
Aimbot обеспечивает высокую точность и гибкость:
- Вкл/Выкл: Активация одной кнопкой.
- Сохранение цели: Удержание прицела на противнике.
- Aimlock: Постоянное отслеживание врагов.
- Предугадывание: Корректировка на движение и полет пули.
- Игнор нокаутов: Пропуск уже поверженных.
- Контроль отдачи: Стабилизация при стрельбе.
- Сглаживание: Естественные движения прицела.
- Визуализация: Отображение зоны FOV, прицела и целей.

⚠️ Важно
Этот инструментарий создан для образовательных целей и исследований безопасности. Использование читов в PUBG нарушает правила игры и может привести к бану. Будьте ответственны!

🔗 Подробности: Исходный код и описание доступны на GitHub: https://github.com/pubg-undetected/pubg-cheat

#PUBG #AppSec #SecurityResearch

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
12🤩8👍2🔥2😱1😢1
This media is not supported in your browser
VIEW IN TELEGRAM
🎮 Mopad — геймпад в Marimo-ноутбуках

Mopad — это anywidget для Marimo, который позволяет получать данные от геймпада в реальном времени. Идеально подходит для:
• интерактивного анализа данных
• создания мини-игр
• любых приложений, где важен живой отклик от контроллера

🔹 Возможности:
- 🔍 Автоматическое определение геймпада — не нужно жать кнопку для подключения
- 📈 Реакция в реальном времени — видите статус подключения и нажатия
- 🕒 Точное время — миллисекундная точность событий
- 🕹️ Поддержка любых кнопок — работает с любым Bluetooth-геймпадом

🧪 Вы получаете dict, который автоматически обновляется при каждом действии на геймпаде. Можно использовать это для управления визуализациями, запусков функций или даже игр прямо в ноутбуке.

🔗 Репозиторий

@pythonl
9👍3🔥2😢1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🎥 Self Forcing: генерация видео в реальном времени с RTX 4090

Новая техника Self Forcing позволяет обучать видеодиффузионные модели "думать как на инференсе" ещё во время обучения.

🧠 Что делает:
▪️ Имитирует autoregressive-инференс с KV-кэшированием прямо во время обучения
▪️ Устраняет расхождение train/test distributions
▪️ Достигает качества SOTA-моделей, но с реальным временем генерации
▪️ Работает даже на одной RTX 4090

⚙️ Требования:
• GPU с 24 GB+ памяти (4090 / A100 / H100 протестированы)
• Linux
• 64 GB RAM
• Другие конфигурации могут работать, но не проверялись

📌 Выход: стриминговое видео — кадр за кадром, без задержек, на одном потребительском GPU.

💡 Self Forcing — шаг к видеогенерации без лага и мегакластеров.

📦 Основан нп Wan 2.1

💻 Требования: минимум 24 ГБ VRAM и 64 ГБ RAM
🧪 Код открыт, всё работает (пока) только под Linux

https://github.com/guandeh17/Self-Forcing

@pythonl
10👍3🔥3😢2
🔥 Успех в IT = скорость + знания + окружение

Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!

AI: t.me/ai_machinelearning_big_data
Python: t.me/python_job_interview
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy

Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
8👍4🔥3🤩1
🖥 Two Claps Open — инструмент, который открывает Chrome или активирует голосового помощника, когда пользователь хлопает в ладоши два раза 👏

💬 Как это работает:
• Слушает микрофон через pyaudio
• Реагирует на два быстрых хлопка подряд
• Открывает браузер или помощника

Возможности зависят только от фантазии:
• Включай музыку или YouTube по хлопку
• Открывай рабочий дашборд при запуске ПК
• Управляй умным домом — включай свет или открывай дверь хлопком


Чтобы понять, как "выглядит" хлопок в аудиосигнале, разработчик записал его и провёл преобразование Фурье. Оказалось, что основная энергия хлопка сосредоточена в диапазоне 1.4–1.8 кГц. Дальше был настроен полосовой фильтр, чтобы выделять только этот диапазон и отсекать шум.

После фильтрации система отслеживает пики в сигнале. Если зафиксировано три хлопка подряд с минимальным интервалом, автоматически запускается Chrome (или любая команда на ваш выбор).

Реализуется в реальном времени — просто и удобно для управления без рук!

Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍4🔥4😱3
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ MicroVMS — новая платформа для запуска кода от AI-агентов с максимальной безопасностью и скоростью.

В отличие от Docker и других тяжелых решений, MicroVMS использует легковесные песочницы для быстрой изоляции, мгновенного старта и простого управления.

● Поддержка разных сред: Python, Node.js и другие
● Идеально для AI-агентов — разработка и запуск без лишних сложностей
● Удобная система управления проектами — настройка песочниц в пару кликов

Если вы хотите запускать код AI-агентов быстро, безопасно и удобно — обратите внимание на MicroVMS.

pip install microsandbox

🔗 Github


@pythonl
11👍5🔥2🤩1
🖥 py-pglite — PostgreSQL без установки, тестируй как с SQLite!

py-pglite — обёртка PGlite для Python, позволяющая запускать настоящую базу PostgreSQL прямо при тестах. Без Docker, без настройки — просто импортируй и работай.

📌 Почему это круто:
- 🧪 Ноль конфигурации: никакого Postgres и Docker, только Python
- Молниеносный старт: 2–3 с против 30–60 с на традиционные подходы :contentReference[oaicite:2]{index=2}
- 🔐 Изолированные базы: новая база для каждого теста — чисто и безопасно
- 🏗️ Реальный Postgres: работает с JSONB, массивами, оконными функциями
- 🔌 Совместимость: SQLAlchemy, Django, psycopg, asyncpg — любая связка :contentReference[oaicite:3]{index=3}

💡 Примеры установки:

pip install py-pglite
pip install py-pglite[sqlalchemy] # SQLAlchemy/SQLModel
pip install py-pglite[django] # Django + pytest-django
pip install py-pglite[asyncpg] # Асинхронный клиент
pip install py-pglite[all] # Всё сразу


🔧 Пример (SQLAlchemy)


python
def test_sqlalchemy_just_works(pglite_session):
user = User(name="Alice")
pglite_session.add(user)
pglite_session.commit()
assert user.id is not None


py‑pglite — идеальный инструмент для unit- и интеграционных тестов, где нужен настоящий Postgres, но без всей админской рутины.

Полноценный PostgreSQL — без его тяжеловесности.


Github

@pythonl

#python #sql #PostgreSQL #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥209👍7🤩1
🚀 Pipedream — платформа для создания интеграций и автоматизаций между сервисами. Этот инструмент позволяет соединять более 1000 приложений через готовые компоненты или собственный код на Node.js, Python, Go и Bash.

Главное преимущество проекта — это гибкость: можно быстро настроить триггеры и цепочки действий без сложной инфраструктуры. Для кастомных сценариев доступно выполнение произвольного кода с подключением любых npm/pip-пакетов. Интеграции развертываются в облаке Pipedream, что избавляет от необходимости настраивать серверы.

🤖 GitHub

@pythonl
7🔥5👍3
🚀 TurboDRF — ускоритель Django REST Framework без боли

TurboDRF — лёгкий способ ускорить ваш Django API без перехода на FastAPI или переписывания логики.

🔥 Что даёт TurboDRF:
Быстрый рендер сериализаторов
🧠 Автоматический prefetch_related и select_related
🧊 Кэширование сериализованных ответов
🧩 Совместим с обычными DRF-сериализаторами

📦 Установка:

pip install turbodrf


🛠️ Пример:

from turbodrf.mixins import TurboModelSerializer

class MySerializer(TurboModelSerializer):
class Meta:
model = MyModel
fields = "__all__"


Идеален для больших Django-проектов, где важна скорость ответа.

🔗 GitHub: https://github.com/alexandercollins/turbodrf

@pythonl
👍94🔥2
🖥 Вышел Git 2.50

Вот основные обновления:
1. Новый уровень работы с cruft packs
- Git хранит неиспользуемые (невидимые) объекты в специальных “cruft packs”.
- Раньше управлять ими было сложно: чтобы добавить или объединить объекты, нужно было всё перепаковывать, что занимало много времени и места.
- Теперь появился флаг --combine-cruft-below-size: можно легко объединять мелкие cruft packs в один, постепенно “чистить” репозиторий.
- Исправлена важная ошибка: раньше такие объекты могли случайно удаляться раньше времени — теперь это под контролем.

2. Быстрее для больших репозиториев — многослойные битмапы
- В больших проектах Git создаёт специальные “карты” (bitmaps), чтобы быстро понимать, какие объекты нужны для определённых коммитов.
- Новая версия поддерживает “инкрементальные” битмапы для multi-pack index — можно добавлять новые данные быстро, не пересоздавая всю структуру.

3. Новый движок слияния ORT
- Старый движок recursive полностью удалён: теперь слияния (`merge`) обрабатывает только быстрый и надёжный ORT.
- Это упростит разработку, повысит скорость merge и уменьшит количество ошибок.

4. Улучшения в утилитах и команде cat-file
- Теперь можно фильтровать объекты по типу, например, быстро получить только “деревья” (tree) с помощью --filter='object:type=tree'.
- Команда для удаления reflog стала интуитивной: вместо сложных параметров просто пишем git reflog delete <branch>.

5. Больше контроля над сетевыми соединениями
- Добавлены настройки для TCP Keepalive, теперь можно гибко управлять поведением Git в нестабильных сетях.

6. Меньше Perl — проще тестировать и собирать
- Git ещё больше избавился от зависимостей на Perl: тесты и документация теперь проще и стабильнее, особенно на системах без Perl.

7. Работа с разреженными (sparse) репозиториями стала удобнее
- Команды вроде git add -p теперь не требуют полной загрузки содержимого — удобно при работе с огромными проектами.

8. Косметические улучшения
- При ребейзе (rebase -i) названия коммитов теперь оформляются как комментарии — так ясно, что это просто для ориентира.

9. Быстрее клонируем через bundle-uri
- Git стал лучше справляться с ускоренным клонированием через *.bundle: теперь клиент правильно учитывает все ссылки, ускоряя загрузку репозитория.

Git 2.50 — это не просто исправление багов, а реальное ускорение и упрощение работы для всех, кто ведёт большие проекты, часто сливает ветки и заботится о “чистоте” репозитория. Новые команды делают жизнь проще, а старые баги — ушли в прошлое.

➡️ Почитать про все обновления

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
17👍9🔥4🤩1
Media is too big
VIEW IN TELEGRAM
💻 Copilot Agent Mode — новый этап в развитии AI-помощников для разработчиков

Теперь доступен всем в июньском обновлении Visual Studio!

🧠 Что умеет:
• Сам строит план разработки
• Выполняет задачи пошагово
• Адаптируется по ходу процесса
• Циклично доводит работу до завершения

Это уже не просто автодополнение — это полноценный агент, способный решать проектные задачи от начала до конца.

📖 Подробнее: https://msft.it/6018SQDuo
#VisualStudio #Copilot #AIdev #AItools #GitHubCopilot

#Copilot

@pythonl
12🔥9👍6😁2
Уверены в своих навыках кодинга?
 
Тогда заглядывайте в канал Selectel. Всю неделю в канале будут выходить полезные материалы для разработчиков:
● Подробная инструкция, как сделать приложение на базе веб-технологий;
● Технические задачи для настоящих Python-энтузиастов;
● Идеи для pet-проектов: от генерации сложных паролей до нейросети для создания изображений;
● И даже выгодные продуктовые предложения, которые помогут воплотить идеи на инфраструктуре Selectel.
 
Подписывайтесь на канал и прокачивайте знания в сфере разработки ➡️
 
Реклама, АО «Селектел», ИНН: 7810962785, ERID: 2VtzqwdjwRx
6👍3😁1😢1🎉1
🐍 PyLeak — найди утечку памяти в своём Python-коде

PyLeak — простой и мощный инструмент для отладки утечек памяти в Python-приложениях.

🔍 Возможности:
• Показывает объекты, которые не удаляет сборщик мусора
• Строит граф зависимостей между объектами
• Выявляет циклические ссылки и "висящие" объекты
• Поддерживает визуализацию через Graphviz

📦 Установка:

pip install pyleak


🧰 Идеален для отладки сервисов, где память утекает незаметно.

🔗 GitHub

@pythonl
12👍8🔥3
Российский рынок СУБД демонстрирует рост — 41,7 млрд ₽ в 2025 году, +16% в год. Главные драйверы: импортозамещение и ИИ.

О приоритетах и текущей стратегии развития платформы данных Yandex Cloud рассказал Леонид Савченков:

В центре внимания надёжность и масштабируемость — особенно для Postgres;
Активное развитие опенсорса: вклад в Cloudberry (ASF), собственный pg-sharding, а YTsaurus может быть особенно полезен Python-разработчикам благодаря поддержке ML;
YTsaurus и YDB теперь доступны для on-premise-развёртывания - решения можно запускать у себя;
Обноваления платформы данных: в DataLens появился редактор графиков на JS, галерея дашбордов и сертификация аналитиков; улучшены механизмы шардирования, а также инструменты масштабирования и отказоустойчивости.

🔍 Отказоустойчивость, открытость и собственные разработки — ключ к суверенной инфраструктуре хранения и обработки данных.

Полное интервью
8🔥5😁5🤩3
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Совет по Python:


from pathlib import Path

# Создаем объект Path для заданного пути к файлу
path = Path("C:/Users/test.md")

# Получаем имя файла вместе с расширением
print(path.name) # 'test.md'

# Получаем только имя файла без расширения
print(path.stem) # 'test'

# Получаем расширение файла (с точкой)
print(path.suffix) # '.md'

# Получаем родительскую директорию (папку)
print(path.parent) # 'C:/Users'

С помощью модуля pathlib вы можете получать различные части пути — имя файла, расширение, родительскую директорию. Это упрощает работу с файловыми путями и их анализ.

Объяснение:

- path.name — возвращает полное имя файла (например, test.md).

- path.stem — возвращает имя файла без расширения (например, test).

- path.suffix — возвращает расширение файла (например, .md).

- path.parent — возвращает путь к родительской директории (например, C:/Users).

Модуль pathlib позволяет удобно разбирать путь к файлу на части и работать с ними, не используя строковые операции вручную. Это особенно полезно для кроссплатформенной работы с файлами и папками.

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍296🔥2🎉1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 MiniMax Agent — новый универсальный ИИ-агент для сложных задач

Команда MiniMax представила MiniMax Agent — интеллектуального агента, способного решать многошаговые, долгосрочные и комплексные задачи.

Что умеет MiniMax Agent:
- Поддерживает комплексное и многошаговое планирование на уровне
- Разбиение задач на подзадачи и их исполнение
- МОщные инструменты генерации кода
- Мультимодальность
- Интеграция с MCP

🔗 https://agent.minimax.io

@ai_machinelearning_big_data

#AI #IntelligentAgent #MiniMax #MultiStepPlanning #Automation #ToolUse #MCP #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥4👍2🤩1
🎯 Практическое руководство: Signals — реактивное управление состоянием в Python

Недавно вышло отличное руководство «The Missing Manual for Signals: State Management for Python Developers», где автор показывает, как внедрять реактивную модель на Python с помощью библиотеки

Почему Signals полезны

Стандартный подход—императивный—скрывает зависимости между переменными, что ведёт к ошибкам:


class OrderService:
def add_order(self, order):
self.orders.append(order)
self.total += order.amount
self.avg = self.total / len(self.orders)
self.notify_if_needed()
self.track_analytics()


Если забыть обновить одно значение — всё сломается.

Как работают Signals

Signals = реактивные переменные, которые:

1. Хранят значение (`Signal`)
2. Автоматически вычисляют производные (`Computed`)
3. Выполняют побочные действия (`Effect`) на изменениях

Пример:


from reaktiv import Signal, Computed, Effect

orders = Signal([])
total = Computed(lambda: sum(o.amount for o in orders()))
avg = Computed(lambda: total() / len(orders()) if orders() else 0)
Effect(lambda: notify(avg()) if avg() > 100 else None)

orders.update(lambda os: os + [new_order])


Теперь всё обновляется автоматически — вручную ничего делать не нужно.

Когда стоит применять


* Сложные производные значения, зависящие от нескольких источников
* Реальные Cascading-настройки, например, конфиг, кэши, соединения
* Сценарии real-time: дашборды, метрики, воркфлоу

Когда лучше не использовать

* Простые последовательные преобразования
* Одноразовые API-вызовы
* Прямолинейные функции (например, вычисление налога)

Основные преимущества

- Чёткое, декларативное управление зависимостями
- Обновления только нужных значений благодаря ленивому пересчёту
- Упрощение тестирования и устранение ошибок обновления

Реальные примеры

- Управление конфигурацией микросервисов
- Реализация real-time дашбордов
- Мониторинг состояния кластера, триггеры скейлинга

💡 Итог: Signals — отличная альтернатива громоздкому императиву.
Декларируешь связь один раз, и система сама поддерживает согласованность.

Полезно как для backend‑разработчиков, так и для ML‑инженеров.
📚 Материал — ~16 минут чтения, и он того стоит

📌 Читать

@pythonl
9👍9🔥4🎉1
📊 Deptry — детектор проблем с зависимостями в Python. Этот инструмент сканирует проект на расхождения между импортами в коде и задекларированными зависимостями. Он работает с Poetry, pip и PDM, находя три типа проблем: неиспользуемые пакеты, отсутствующие зависимости и модули, ошибочно помеченные как dev-зависимости.

Инструмент анализирует не только requirements.txt, но и динамические импорты черезависимостями что снижает количество ложных срабатываний. Для настройки можно использовать как CLI-аргументы, так и секцию [tool.deptry] в� Deptry — детекто

🤖 GitHub

@pythonl
10👍7🔥4
📈 TradingAgents — мультиагентная LLM-платформа для алгоритмической торговли

🎉 TradingAgents официально открыт! После большого интереса со стороны сообщества разработчики решили выложить весь фреймворк в open-source.

🔧 Что такое TradingAgents:
• Это мультиагентная система, имитирующая работу реальной трейдинговой фирмы
• Каждый агент выполняет свою роль — от анализа данных до принятия решений
• Все агенты основаны на LLM-моделях и взаимодействуют между собой

👥 Роли агентов:
Fundamentals Analyst — анализ финансовых показателей компаний
Sentiment Analyst — оценка настроений по соцсетям и новостям
News Analyst — отслеживание глобальных событий и их влияния на рынок
Technical Analyst — прогноз на основе графиков, индикаторов (MACD, RSI и др.)

⚠️ Важно: проект предназначен для исследовательских целей и не является финансовой рекомендацией. Результаты могут зависеть от модели, данных и параметров генерации.

📦 Возможности:
• CLI и GUI-интерфейс
• Быстрый запуск и кастомизация
• Структура, готовая к масштабированию

🔗 Репозиторий: https://github.com/AI4Finance-Foundation/TradingAgents
#AItrading #LLM #MultiAgent #TradingAgents #fintech #opensource
10🔥7👍3😢2🤩2😁1