Python/ django
58.6K subscribers
2.1K photos
65 videos
47 files
2.81K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
🎭 Pykka — акторная модель для Python без лишних сложности. Этот проект позволяет организовывать конкурентные вычисления без традиционных проблем с состоянием и блокировками.

Вдохновлённый знаменитым Akka для JVM, Pykka предлагает минималистичный подход — никаких супервизоров или распределённых акторов, только чистые принципы обмена сообщениями между изолированными процессами.
Инструмент имеет продуманную архитектуру: разработчику достаточно определить поведение акторов, а Pykka возьмет на себя всю работу с очередями и потоками.

🤖 GitHub

@pythonl
Второй язык программирования для карьерного роста

Навык работы с Go — это хорошее дополнение к скиллсету опытного программиста. Освоить язык можно на курсе Нетологии. Это актуальная программа 2025 года, которую мы разработали с учётом последних трендов отрасли.
На курсе вас ждёт много практики: 4 проекта для портфолио, 32 задания и хакатон. За 6 месяцев вы освоите язык на продвинутом уровне и научитесь:

- писать эффективный код на Go,
- создавать высоконагруженные сервисы,
- работать с базами данных,
- встраивать Go-приложения в инфраструктуру.

Практикующий эксперт проведёт для вас 3 персональные консультации. Центр развития карьеры поможет упаковать весь опыт в сильные резюме и портфолио. Освойте Go как второй язык программирования и растите в карьере

Реклама. ООО "Нетология". ИНН 7726464125 Erid 2VSb5xBerBJ
🐍 Задача уровня Pro: декоратор с внутренним состоянием

📌 Задача:
Напиши декоратор call_limiter, который:

- ограничивает функцию f максимум до n вызовов
- после n вызова функция больше не вызывается, а возвращает строку "LIMIT REACHED"

Пример использования:


@call_limiter(3)
def greet(name):
return f"Hello, {name}!"

print(greet("Alice")) # Hello, Alice!
print(greet("Bob")) # Hello, Bob!
print(greet("Charlie"))# Hello, Charlie!
print(greet("Dave")) # LIMIT REACHED


🎯 Подвохи:
- Нужно создать декоратор-фабрику с аргументом n
- Внутри должна быть функция с nonlocal, чтобы отслеживать число вызовов
- Часто путаются и используют mutable default, что ломает независимость между декорируемыми функциями

Решение:

```python
def call_limiter(n):
def decorator(func):
count = 0
def wrapper(*args, **kwargs):
nonlocal count
if count >= n:
return "LIMIT REACHED"
count += 1
return func(*args, **kwargs)
return wrapper
return decorator
```

🧪 **Проверка:**

```python
@call_limiter(2)
def ping():
return "pong"

print(ping()) # pong
print(ping()) # pong
print(ping()) # LIMIT REACHED

@call_limiter(1)
def echo(msg):
return msg

print(echo("hi")) # hi
print(echo("bye")) # LIMIT REACHED
```

🧠 **Что проверяет задача:**

• Понимание функций высшего порядка
• Работа с `nonlocal` и областью видимости
• Контроль состояния внутри декоратора
• Умение не "засорить" глобальные или общие области



@pythonl
🤖 ACI.dev — Унифицированный доступ AI-агентов к 600+ инструментам

ACI (Agent Capability Interface) — это открытая платформа, которая позволяет AI-агентам подключаться к более чем 600 внешним инструментам и API, используя единую инфраструктуру доступа. Система включает поддержку многоарендной архитектуры (multi-tenant), гибкие разрешения и несколько режимов вызова — как через MCP-сервер, так и напрямую через SDK.

🎯 Цель проекта — предоставить ИИ-доступ к реальным действиям в цифровой среде: от отправки писем и управления календарём до взаимодействия с CRM, базами данных, DevOps-инструментами и даже пользовательскими функциями.

🧩 Основные возможности:

- 🔌 600+ готовых интеграций
Поддержка популярных платформ: Notion, Slack, Google Calendar, GitHub, Discord, Twilio, PostgreSQL и многих других.

- 🔐 Разграничение доступа и безопасность
Поддержка granular-permissions, токенов доступа, ролей, и подписанных вызовов с проверкой подлинности.

- 🧠 Интеграция с AI-агентами
Разработано для работы с open-source AI-платформами, включая AutoGen, CrewAI, LangGraph, OpenDevin, Devika и т.д.

- 🛠️ Два способа использования
1. MCP Server — единая точка входа, через которую агент может выполнять действия.
2. ACI SDK — локальное подключение и вызов возможностей напрямую из кода.

- 🌐 Webhooks и Plugin support
Поддержка обратных вызовов и подключения как внешнего плагина к другим системам (например, для LLM-агентов).

ACI — это своего рода "операционная система" для ИИ-агентов, позволяющая им действовать в реальном мире с контролем, безопасностью и масштабируемостью.

🔗 Полезные ссылки:
- GitHub
- Документация
This media is not supported in your browser
VIEW IN TELEGRAM
🎮 Oh My ~God~ Git — необычная и полезная игра с открытым исходным кодом, которая помогает разобраться с GIT не через скучные туториалы, а с помощью наглядных карточек и геймплея.

🧠 В процессе ты:
• Поймёшь, как устроен GIT под капотом
• Научишься работать с ветками, коммитами, merge и rebase
• Запомнишь команды на практике, играя

📦 Игра доступна прямо в браузере: [ohmygit.org](https://ohmygit.org/)
💻 Или можно скачать и установить с GitHub: [github.com/git-learning-game/oh-my-git](https://github.com/git-learning-game/oh-my-git)

👾 Подходит как новичкам, так и тем, кто хочет освежить знания в игровой форме.
🪬 Boto3 — мост между Python и AWS. Эта официальная Python-библиотека предоставляет удобный интерфейс для взаимодействия с сервисами AWS — от простых операций с S3 до управления кластерами EC2.

После недавнего прекращения поддержки Python 3.8 проект сосредоточился на современных версиях языка. Особенность Boto3 в двухуровневой архитектуре: низкоуровневые клиенты для точного контроля и ресурсные объекты для упрощённого синтаксиса. Документация от AWS включает примеры для всех основных сервисов, что делает интеграцию почти безболезненной.

🤖 GitHub

@pythonl
🧠 Как клонировать голос с помощью Open Source (Coqui TTS)

Хочешь, чтобы ИИ говорил твоим голосом? Без подписок, платных API и ограничений? Вот подробная инструкция, как клонировать свой голос с нуля с помощью open-source инструментов:

🔧 Установка


sudo apt install ffmpeg
pip install TTS soundfile torchaudio gradio

git clone https://github.com/coqui-ai/TTS.git
cd TTS
pip install -e .

🎙️ 1. Подготовка записи голоса

Тебе нужен файл .wav:
- продолжительность: от 1 минуты
- формат: моно, 16 кГц, 16-bit

Пример конвертации:

ffmpeg -i input.mp3 -ac 1 -ar 16000 output.wav


🧬 2. Генерация эмбеддинга твоего голоса


from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts

config = XttsConfig()
model = Xtts.init_from_config(config)
model.load_checkpoint("tts_models/multilingual/multi-dataset/xtts_v2")

voice_sample = "your_voice.wav"
speaker_embedding = model.get_speaker_embedding(voice_sample)

📤 3. Генерация речи с твоим голосом


text = "Привет! Я теперь могу говорить твоим голосом."
wav = model.tts(text, speaker_embedding=speaker_embedding)
model.save_wav(wav, "output.wav")


💻 4. (Опционально) Интерфейс с Gradio


import gradio as gr

def speak(text):
wav = model.tts(text, speaker_embedding=speaker_embedding)
path = "generated.wav"
model.save_wav(wav, path)
return path

gr.Interface(fn=speak, inputs=gr.Textbox(), outputs=gr.Audio()).launch()


Быстрый способ (через CLI)


tts --model_name "tts_models/multilingual/multi-dataset/xtts_v2" \
--text "Привет, мир!" \
--speaker_wav path/to/your.wav \
--out_path output.wav


⚠️ Важно


- 💻 Работает на CPU, но лучше с GPU.
- 🌐 Поддерживает русский язык.

@pythonl
🖥 Как масштабировать Python Task Queue — подробный гайд

Когда ваше Python-приложение начинает активно использовать фоновые задачи (email-уведомления, видеообработка, интеграции и т.д.), быстро возникает проблема: очередь задач растёт, задержка увеличивается, пользователи начинают ощущать тормоза.
В статье разбирается, как это решать грамотно, автоматически и эффективно.

🎯 Основные проблемы:
• Даже при низком CPU задачи могут выполняться с задержкой
• Очередь может казаться «тихой», но задачи копятся
• Масштабирование вручную по метрикам CPU/памяти — неэффективно
• Часто “один жирный воркер” не решает проблему — надо менять подход

⚙️ Как масштабировать: пошагово

1) 🔌 Выбор брокера сообщений

• Redis — прост в настройке, отлично работает с Celery и RQ
• RabbitMQ — надёжнее (повторы, подтверждения), подходит для критичных задач

2) ⚙️ Настройка воркеров

• *Вертикальное масштабирование*
— больше процессов внутри одного воркера (в Celery можно concurrency)
• *Горизонтальное масштабирование*
— запуск множества воркеров на разных инстансах, читающих из одной очереди
— универсальное и гибкое решение

3) 📈 Авто-скейлинг по latency, а не CPU

• Частая ошибка: масштабировать по CPU
• Правильный подход: масштабировать по времени ожидания задач в очереди
• Judoscale позволяет автоматизировать масштабирование именно по queue latency
• При росте задержки запускаются новые воркеры, при снижении — отключаются

4) 🧠 Fan-Out: разбивай большие задачи

Вместо:
Одна задача: обработать 10 000 пользователей

Правильно:
10 000 задач: по одной на каждого пользователя

Преимущества:
• Параллельность
• Надёжность (ошибки локализуются)
• Легче масштабировать обработку

📊 Результаты после внедрения:
• Время ожидания задач сократилось с 25 минут до 30 секунд
• Масштабирование стало динамичным
• Инфраструктура стала дешевле — меньше простаивающих воркеров

Рекомендации:
• Используй Redis или RabbitMQ в зависимости от требований
• Отдавай предпочтение горизонтальному масштабированию
• Следи за latency, а не за CPU
• Используй Judoscale для авто-масштабирования
• Применяй fan-out для повышения надёжности и скорости

🖥 Ссылка на статью

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
«Я в режиме реального времени поясняла структуру запросов / ответов в Postman и разбирала документацию в Swagger», — пишет аналитик, который прошел наш курс, а потом два технических собеседования в международные компании. Приятно, конечно ❤️

Если в 2025 году вы хотите:
— научиться выбирать стиль интеграции под вашу задачу;
— начать проектировать с нуля и описывать интеграции в современных стилях (API: REST, SOAP, gRPC и других, + брокеры сообщений);
— узнать как правильно собирать требования и моделировать в UML;
— подготовиться к собеседованию, решив более 100 заданий;
— запустить свой API на Python.

Значит наш курс для вас!

🚀 Начните с открытых бесплатных
уроков — переходите в бот курса и жмите «Старт»
👇
@studyit_help_bot

🚀 Скидка на курс
от канала — 1 000₽ на Stepik по промокоду PYTHONL до конца мая.
🐍 Задача на Python: "Исчезающая цифра"

Условие:
У тебя есть список строк — чисел от 1 до 100, но одно из чисел случайно пропало.
Найди, какое число отсутствует. Нельзя использовать sum(), sorted(), Counter. Все числа в списке представлены как строки.

Пример:


import random

original = [str(i) for i in range(1, 101)]
missing = random.choice(original)
shuffled = original.copy()
shuffled.remove(missing)
random.shuffle(shuffled)


Напиши функцию:


def find_missing_number(data: list[str]) -> int:
...


📌 Подвох:
Нельзя просто сложить строки. Но можно использовать свойство XOR:


a ^ a = 0
0 ^ b = b


То есть: если мы сделаем XOR всех чисел от 1 до 100, а затем XOR всех чисел в переданном списке — результатом будет пропущенное число.

🧠 Решение:

```python
def find_missing_number(data: list[str]) -> int:
xor_full = 0
xor_data = 0

for i in range(1, 101):
xor_full ^= i

for val in data:
xor_data ^= int(val)

return xor_full ^ xor_data
```

Пояснение:
-
xor_full — XOR всех чисел от 1 до 100.
-
xor_data — XOR всех чисел в текущем списке (`str` → `int`).
- Разность
xor_full ^ xor_data вернёт единственное отсутствующее число.

🎯 Пример использования:

```python
original = [str(i) for i in range(1, 101)]
original.remove("42")
random.shuffle(original)

print(find_missing_number(original)) # → 42
```

🔥 Эта задача хороша тем, что:
• содержит хитрый запрет на
sum()
• требует знания побитовых операций
• работает с типами (`str` vs `int`)
• подходит для собеседования уровня middle+

@pythonl
🔍Тестовое собеседование на Middle Python-разработчика в четверг

22 мая(в четверг) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.

Собес проведет Вадим Пуштаев, ex. head of backend в 💙, автор канала @pythonetc, архитектор в европейской компании

Как это будет:
📂 Вадим будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Вадим будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Вадиму

Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.

Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot

Реклама. ООО "ШОРТКАТ", ИНН: 9731139396, erid: 2VtzqwFUCLU
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 PyRoki — модульный инструмент для оптимизации кинематики роботов

На GitHub и в preprint на arXiv появилась новая работа от исследователей из Berkeley — PyRoki (Python Robot Kinematics Toolkit). Это мощный, гибкий и кроссплатформенный инструмент на Python для задач оптимизации в робототехнике.

🔧 Что такое PyRoki?


PyRoki — это:

- 📦 Модульная архитектура
Разделение переменных оптимизации и функций стоимости (costs) позволяет комбинировать задачи IK, планирования траектории, ретаргетинга и многое другое — без повторения кода.

- ⚙️ Дифференцируемая кинематика
Поддержка URDF-моделей, автоматическое создание collision-примитивов (например, капсул), работа с NumPy и JAX.

- 🚀 Поддержка CPU, GPU и TPU
Высокая производительность и масштабируемость на любых вычислительных устройствах.

- 🧠 Оптимизация на многообразиях (Lie-группы)
Встроенный алгоритм Levenberg–Marquardt даёт устойчивую и быструю сходимость даже для сложных конфигураций.

📊 Результаты

- Быстрее cuRobo на 1.4–1.7x при решении задач IK в батче.
- Более точные результаты при меньших вычислительных затратах.
- Интерактивный визуализатор (на базе `viser`) для отладки и анализа.

📁 Примеры использования

PyRoki включает в себя готовые сценарии:
- инверсная кинематика (IK)
- бимануальные манипуляции
- мобильные платформы
- ретаргетинг движений гуманоидов
- учёт столкновений
- online-планирование и управление

🚀 Установка


git clone https://github.com/chungmin99/pyroki.git
cd pyroki
pip install -e .


Требуется Python 3.12+ (частичная поддержка Python 3.10–3.11).

PyRoki — это:

- 📐 Удобный фреймворк для исследований в области робототехники.
- 🛠️ Подходит как для академических, так и для прикладных задач.
- 🌐 Гибкий и масштабируемый — от одного робота до больших motion-баз.

Если интересен пример интеграции с ROS, Gazebo или симуляцией цифрового двойника — дай знать, покажу!

🔗 Репозиторий

#Python #Robotics #Kinematics #InverseKinematics #MotionPlanning #OpenSource

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 AЭРОДИСК ищет Senior Python-разработчика для сложных и прокачивающих задач в разработке СХД!

Хочешь:
— Работать над репликацией, метрокластером и высоконагруженными системами?
— Глубоко погрузиться в Linux, сетевые протоколы и архитектуру ПО?
— Решать нетривиальные задачи, влияя на масштабные инфраструктурные решения?
— Прокачивать скилы в команде с крутыми инженерами и архитекторами?

📌 Нужно:
— Python (от 3 лет), Linux — экспертно
— Понимание сетей, репликации, системной архитектуры
— SQL/NoSQL, работа с техдокументацией на английском.

🧠 Прокачка:
— Живое общение, обучение за счёт компании, конференции
— Чёткий рост, внутренняя экспертиза, развитие в enterprise-инфраструктуре

💼 Офис в БЦ "Кругозор", соцпакет, гибкий график
👉 Подробнее и отклик

🔥 Скучно не будет — будет интересно и мощно.

Реклама. ООО "АЕРО ДИСК". ИНН 7731475010. erid: 2W5zFGsyf7E
🐍 Задача с подвохом: mutable default arguments в Python

🔹 Уровень: Advanced
🔹 Темы: изменяемые аргументы по умолчанию, функции, ловушки с list и dict

📌 Условие

Что выведет следующий код?


def append_to_list(value, my_list=[]):
my_list.append(value)
return my_list

print(append_to_list(1))
print(append_to_list(2))
print(append_to_list(3))


Вопросы

1. Почему результат выглядит неожиданно?
2. Как исправить это поведение?
3. Когда стоит использовать изменяемые аргументы по умолчанию — если вообще стоит?

🔍 Разбор

Ожидаемый вывод:

[1]
[1, 2]
[1, 2, 3]


🔧 Почему так происходит

- Аргументы по умолчанию вычисляются один раз — во время определения функции, а не при каждом вызове.
- Значение my_list=[] создаётся один раз и затем используется повторно при всех вызовах.
- Все вызовы append_to_list изменяют один и тот же список.

⚠️ Подвох

Это один из самых коварных багов в Python, особенно среди начинающих — кажется, что my_list должен быть новым на каждый вызов, но это не так.

🧠 Вывод

- Никогда не используй изменяемые типы (list, dict, set) как значения по умолчанию.
- Вместо этого используй None и создавай новый объект вручную:


def append_to_list(value, my_list=None):
if my_list is None:
my_list = []
my_list.append(value)
return my_list


Тогда вывод будет:

[1]
[2]
[3]


📌 Это правило относится ко всем изменяемым типам: [], {}, set() и кастомные классы.
Python уже покорен? А как насчет Django?
 
Один из ведущих провайдеров IT-инфраструктуры Selectel подготовил бесплатный мини-курс по Django. Программа начинается с создания и настройки простых проектов: блога и канбан-доски, а завершается подключением автоматических бэкапов.
 
Всего за час вы научитесь:
1️⃣ Работать с бэкендом и API
2️⃣ Создавать веб-приложение по шаблону от Django
3️⃣ Настраивать Nginx и Gunicorn
4️⃣ Автоматизировать резервное копирование
 
Переходите в Академию Selectel, чтобы начать изучение прямо сейчас

Реклама. АО «Селектел», ИНН 7810962785, ERID: 2VtzqvQwmor
Please open Telegram to view this post
VIEW IN TELEGRAM
🛡 StarGuard — умный аудит GitHub-репозиториев прямо из консоли

Открытый проект — это мощный CLI-инструмент на Python, который автоматически анализирует open-source репозитории и помогает выявить:

🔸 фальшивые звёзды
🔸 всплески активности
🔸 опасные зависимости
🔸 лицензии с подвохом
🔸 подозрительный код и токсичных контрибьюторов

📊 Что делает StarGuard

Обнаруживает аномалии звёзд
— Вычисляет резкие всплески популярности с помощью BurstDetector и медианного отклонения.
— Определяет подозрительных пользователей с «пустыми» профилями и новыми аккаунтами.

Анализирует зависимости и SBOM
— Поддержка PyPI, npm, Maven, Go, Ruby
— Предупреждает об unpinned-пакетах и git-зависимостях

Проверяет лицензии
— Выявляет несовместимости (например, AGPL внутри MIT)
— Предупреждает о скрытых ограничениях

Оценивает контрибьюторов
— Проверяет концентрацию коммитов
— Определяет "одиночек", на которых держится проект

Сканирует код на опасные паттерны
— Обнаруживает eval, скрытые майнеры, необфусцированные ключи

🚀 Как использовать


python -m starguard.cli owner/repo --format markdown --plot stars.png


🔹 Без GitHub-токена работает, но лимит — 60 запросов/час
🔹 С GITHUB_TOKEN — до 5000 запросов

🎯 Кому полезно

• DevOps-командам — для верификации OSS-зависимостей
• Безопасникам — для быстрой проверки на supply chain угрозы
• Инвесторам — чтобы не попасть на проекты с "накрученной" популярностью
• Open Source авторам — для прозрачности и Trust Badge

🔗 GitHub

💡 Инструмент, который показывает, что за красивыми графиками звёзд часто стоит маркетинг, а не код. Умей фильтровать — ставь охрану у репозитория.

@pythonl
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 DeerFlow — Open‑Source фреймворк для Deep Research от ByteDance

🌟 Что такое DeerFlow?

DeerFlow (Deep Exploration and Efficient Research Flow) — это модульный multi-agent фреймворк с открытым исходным кодом, созданный для автоматизации глубоких исследовательских процессов. Он сочетает работу с LLM, веб-поиск, краулинг и выполнение Python-кода :contentReference[oaicite:0]{index=0}.

🧱 Основные особенности

- Multi-agent архитектура
Координатор, Планировщик, Исследователь, Кодер, Репортер и даже голосовой модуль — каждый агент выполняет свою задачу в пайплайне исследования :contentReference[oaicite:1]{index=1}.

- Интеграция инструментов
Встроенный веб-поиск (Tavily, DuckDuckGo, Brave, arXiv), web scraping через Jina, Python REPL для исполнения кода, генерация отчетов и даже автоматизированные подкасты при помощи TTS :contentReference[oaicite:2]{index=2}.

- Human‑in‑the‑loop
Возможность ставить задачи и править планы вручную — обеспечивается контроль на каждом этапе :contentReference[oaicite:3]{index=3}.

- Генерация конечного контента
Полученные данные консолидируются в отчеты (Markdown, PPT), синтезируются в речь (подкасты), экспортируются — всё автономно.

⚙️ Github

@pythonl