Python/ django
59K subscribers
2.08K photos
62 videos
47 files
2.8K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
⚡️Строим рекомендательную систему фильмов на Kaggle

Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬

Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.

Что будем делать на вебинаре:
🟠Разберем имеющиеся данные фильмов с их оценками
🟠Проведем предобработку данных
🟠Построим рекомендательную систему на основе машинного обучения
🟠Проведем расчет и анализ метрик на основе результатов работы модели

Вебинар будет интересен как новичкам, так и уже опытным специалистам

😶Зарегистрироваться на бесплатный вебинар
Please open Telegram to view this post
VIEW IN TELEGRAM
🔍 Основные нововведения в Django 5.2

1. 📦 Автоматический импорт моделей в интерактивной оболочке
Теперь при запуске команды python manage.py shell все модели из установленных приложений автоматически импортируются.

Это упрощает работу в интерактивной оболочке, позволяя сразу использовать модели без необходимости ручного импорта. Для получения подробностей об импортированных объектах можно использовать флаг -v 2.​

2. 🔗 Поддержка составных первичных ключей
Django 5.2 вводит нативную поддержку составных первичных ключей через класс CompositePrimaryKey. Это позволяет создавать таблицы с первичным ключом, состоящим из нескольких полей, без необходимости использования сторонних решений.​

3. 🧩 Гибкая настройка BoundField в формах
Теперь можно переопределять класс BoundField на уровне проекта, формы или отдельного поля, устанавливая атрибут bound_field_class. Это предоставляет разработчикам более тонкий контроль над отображением и поведением форм.​


4. Расширенная асинхронная поддержка
Django продолжает движение в сторону асинхронности, добавляя новые асинхронные методы и улучшая реализацию бэкендов аутентификации. Это особенно полезно для операций, связанных с вводом-выводом, и способствует созданию более производительных приложений.​

5. 🎨 Новые виджеты форм и улучшения интерфейса
Добавлены новые виджеты форм, такие как ColorInput, SearchInput и TelInput, соответствующие стандартам HTML5. Также улучшена доступность форм для пользователей с особыми потребностями.​
Bastaki Software Solutions L.L.C-FZ

6. 🗃️ Улучшения в работе с базой данных

Поддержка изогнутых геометрий в GDAL, включая CurvePolygon, CompoundCurve, CircularString, MultiSurface и MultiCurve.

По умолчанию соединения с MySQL используют кодировку utf8mb4 вместо устаревшей utf8mb3.

Улучшена работа методов values() и values_list(), теперь они генерируют SELECT-запросы в указанном порядке.​

🔧 Совместимость и поддержка
Django 5.2 поддерживает Python версий 3.10–3.13.

С выходом этой версии, основная поддержка Django 5.1 завершена. Последний минорный релиз 5.1.8, также содержащий обновления безопасности, был выпущен одновременно с 5.2.

Django 5.0 достиг конца расширенной поддержки. Последний релиз безопасности, 5.0.14, также был выпущен сегодня. Рекомендуется обновиться до версии 5.1 или более новой.

📥 Обновление и ресурсы
Загрузить Django 5.2 можно с официальной страницы загрузки или через PyPI.

Полные примечания к релизу доступны в официальной документации.

Для автоматического обновления кода и устранения устаревших конструкций можно использовать инструмент django-upgrade.​
Django Project

Django 5.2 предлагает множество улучшений, направленных на упрощение разработки и повышение производительности приложений. Рекомендуется ознакомиться с новыми возможностями и планировать обновление своих проектов для использования всех преимуществ этой версии.

📌 Релиз

@pythonl
🐍 7 “бесполезных” функций Python, которые на самом деле полезны

Инструменты из стандартной библиотеки, которые могут удивить:

1. textwrap.dedent() — удаляет отступы у многострочного текста.

import textwrap
text = textwrap.dedent(\"\"\"
Привет!
Это текст с отступами.
\"\"\").strip()
print(text)


2. difflib.get_close_matches() — находит похожие строки.

import difflib
words = ["python", "java", "javascript"]
print(difflib.get_close_matches("javascrip", words))


3. uuid.uuid4() — генерирует уникальный ID.

import uuid
print(uuid.uuid4())


4. shutil.get_terminal_size() — узнаёт размеры терминала.

import shutil
columns, rows = shutil.get_terminal_size()
print(f"Размер терминала: {columns}x{rows}")


5. functools.lru_cache() — кэширует результаты функции.

from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
if n < 2:
return n
return fib(n-1) fib(n-2)
print(fib(100))


6. itertools.groupby() — группирует элементы по ключу.

from itertools import groupby
data = [('fruit', 'apple'), ('fruit', 'banana'), ('veg', 'carrot')]
for key, group in groupby(data, lambda x: x[0]):
print(key, list(group))


7. contextlib.suppress() — элегантная альтернатива try-except.

from contextlib import suppress
with suppress(FileNotFoundError):
open("not_exist.txt")


@pythonl
😂 Жиза

@pythonl
🖥 less_slow.py — Python, который не тормозит

Многие считают Python медленным, но это не всегда правда.
Ash Vardanyan в рамках проекта Less Slow показывает, как писать быстрый и эффективный код даже на Python — без магии, но с пониманием.

🐍 Что в проекте:
🔹 pandas vs polars — что быстрее при работе с миллионами строк
🔹 Использование Numba, Cython, PyO3, rust bindings
🔹 Работа с нативными типами, векторизация и zero-copy
🔹 Сериализация без боли: сравнение MessagePack, Arrow, Parquet
🔹 Сравнение аллокаторов, подходов к I/O и нагрузочным тестам
🔹 Ускорение парсинга JSON: orjson, yyjson, simdjson, ujson
🔹 Как обойти GIL и не платить за удобство интерпретатора

📦 Библиотеки и техники:
Numba, Cython, cffi, maturin
simdjson, orjson, polars
pyarrow, msgspec, blosc2, memoryview
Работа с mmap, zero-copy, JIT-компиляция, py-spy, perf

📈 Кому подойдёт:
Тем, кто пишет ETL, пайплайны или ML/AI обработку

Кто работает с большими объёмами данных или бинарными файлами

Кто хочет “оптимизировать до безобразия” и понять, как работает Python под капотом

В серии есть еще 2 крутых проекта:

🖥 less_slow.cpp — C++ без тормозов: ассемблер, кеши, SIMD, аллокации, парсинг JSON и трюки с памятью
👉 github.com/ashvardanian/less_slow.cpp

👣 less_slow.rs — продвинутый Rust: сравнение async/sync, SIMD, кеш-френдли структуры, быстрые сериализации
👉 github.com/ashvardanian/less_slow.rs


📚 Репозиторий:

💡 Даже если ты не используешь всё это каждый день — ты точно станешь писать лучший Python-код.

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 TeleGraphite — быстрый и надёжный скрапер публичных Telegram-каналов на Python.

Возможности:
- Извлечение постов из нескольких каналов в JSON (ID, текст, время, ссылки, почты, телефоны)
- Загрузка медиа (фото, видео, документы)
- Удаление дубликатов
- Однократный режим (telegraphite once) и непрерывный (telegraphite continuous --interval)
- Фильтрация по ключевым словам, типу контента (текст/медиа)
- Планирование запусков по расписанию
- Настройка через CLI и YAML

Установка:
1) pip install telegraphite
2) Создать .env с API_ID и API_HASH
3) Список каналов в channels.txt

Репозиторий
: https://github.com/hamodywe/telegram-scraper-TeleGraphite

@pythonl
🐍 Как просто создать мультисловарь (Multi-dictionary) в Python

Хочешь, чтобы один ключ в словаре указывал на несколько значений?

Легко!

Используй collections.defaultdict и встроенный list:


from collections import defaultdict

multidict = defaultdict(list)
multidict["SW"].append("Han Solo")
multidict["SW"].append("R2D2")


🔁 Теперь каждый ключ по умолчанию сопоставляется с пустым списком. А append добавляет новое значение в этот список.

Но будь внимателен: это немного “обман”. На самом деле словарь всё ещё отображает один ключ → одно значение. Просто это значение — список, в который ты уже сам кладёшь что угодно.

Почему defaultdict удобен?
Потому что тебе не нужно проверять, есть ли ключ в словаре. Пустой список будет создан автоматически при первом обращении к ключу.

@pythonl
🔥 Smolmodels — это библиотека на Python, которая позволяет создавать модели машинного обучения, описывая их поведение на естественном языке и используя минимальное количество кода!

🔍 Основные возможности Smolmodels:

🌟 Определение моделей с помощью естественного языка: Пользователь описывает намерение модели и её входные и выходные схемы на обычном языке, а библиотека автоматически выбирает метрику для оптимизации и генерирует логику для инженерии признаков, обучения модели и её оценки.

🌟 Построение модели: Метод model.build() принимает набор данных (существующий или сгенерированный) и создаёт множество возможных решений модели, обучая и оценивая их для выбора наилучшего.

🌟 Генерация данных и определение схемы: Библиотека может генерировать синтетические данные для обучения и тестирования, что полезно при отсутствии реальных данных или для дополнения существующих.

🔐 Лицензия: Apache-2.0

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Мечтаете не просто разбираться в управлении данными, а использовать уникальные инструменты для работы с Big Data? Научитесь этому на бесплатном студкемпе Яндекс Образования и ИТМО по дата-инженерии!

🧠 Программа — интенсивная, актуальная, от лидеров индустрии. С 30 июня по 12 июля вы погрузитесь в мир распределённых хранилищ, микросервисной архитектуры, DataOps/MLOps и пайплайнов для сбора, анализа и визуализации данных. А ещё познакомитесь с технологиями, которые используют в крупных компаниях. В общем, получите реальные навыки, которые ценят на рынке!

🏙 Кампус — в самом центре Санкт-Петербурга. Несмотря на то, что студкемп проходит на базе ИТМО, заявки ждут от студентов из любых вузов и регионов России. Проезд и проживание будут оплачены Яндекс Образованием, так что вам останется сосредоточиться на главном — знаниях, опыте и новых возможностях.

🕐 Регистрация — открыта до 4 мая, но подать заявку можно уже сейчас! Если давно хотели пообщаться с топовыми айтишниками и почувствовать, каково это — учиться в одном из ведущих технических вузов, не откладывайте и заполняйте анкету по ссылке.
🖥 ex — это утилита для создания одного исполняемого файла .pex, внутри которого содержится вся ваша программа на Python и её зависимости. По сути это самодостаточная, переносимая среда выполнения, похожая на virtualenv, но упакованная в один файл.

Зачем это нужно?

Простота развёртывания: чтобы установить и запустить приложение, достаточно скопировать файл app.pex и запустить его — никакой дополнительной настройки.

Портируемость: один файл может включать сборки для разных платформ (Linux, macOS).

Изоляция зависимостей: все библиотеки (включая C‑расширения) уже внутри, конфликтов версий нет.

Как пользоваться:

Устанавливаем сам инструмент:


pip install pex
Собираем .pex-файл:


pex requests -o fetch.pex --script=requests
После этого fetch.pex — готовый исполняемый файл, который при запуске сразу импортирует и запускает библиотеку requests.

Интеграция с другими сборщиками:
Системы вроде Pants, Buck и {py}gradle умеют автоматически собирать .pex-архивы из вашего кода.

Лицензия: Apache 2.0

GitHub: https://github.com/pex-tool/pex
Документация: https://docs.pex-tool.org/

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Уже разбираетесь в Python, но хотите большего? Тогда вам на PiterPy 2025

🗓️16–17 мая
📍 Питер + онлайн

PiterPy — конференция для всех, кто использует Python в работе. Здесь собираются бэкенд-разработчики, тестировщики, DevOps, дата- и ML-инженеры и аналитики, а также тимлиды.

Перед вами выступят спикеры из Яндекса, Т-Банка, Точки, Авито, Ozon и других известных компаний. Вас ждет два дня докладов про бэкенд и архитектуру, библиотеки и инструменты, практики разработки и Core Python, а еще мастер-класс по программированию роботов.

А вот что с билетами:
→ Дают скидку 15% на билет для частных лиц по промокоду DJANGO;
→ Есть билет для студентов и преподавателей вузов — в два раза дешевле персонального;
→ Можно попросить руководство приобрести вам корпоративный билет.

Бонус: в соседних залах пройдет ML-конференция IML. Участники PiterPy смогут послушать доклады IML бесплатно.

За подробностями и билетами
🖥Groovy — это транспилер, преобразующий функции Python в их эквиваленты на JavaScript!

🌟 Он используется в библиотеке Gradio, позволяя разработчикам писать функции на Python, которые затем выполняются на стороне клиента как JavaScript, обеспечивая быструю работу. Groovy поддерживает подмножество стандартной библиотеки Python и некоторые специфические классы Gradio, с акцентом на подробное сообщение об ошибках при попытке транспиляции неподдерживаемого кода.

🔐 Лицензия: Apache-2.0

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Новинка в Python 3.14: t-строки — типобезопасные f-строки

Python 3.14 вводит t"..." — новый синтаксис для строк, ориентированных на безопасность типов и интеграцию с системами шаблонов, SQL, HTML и др.

🔹 Что такое t-строка?
t"..." — это как f"...", но:

- интерполяция ограничена и контролируема;
- поддерживается строгое соответствие шаблону;
- можно передавать переменные явно, предотвращая SQL-инъекции и XSS.

🔸 Пример:

name = "Alice"
greeting = t"Hello, {name}!" # t-строка
Вместо немедленной подстановки, как в f"...", t"..." создает шаблон с выражениями как параметрами.


🔐 Зачем это нужно?
Безопасность при генерации SQL, HTML, JSON

Улучшение инструментов и проверки типов (через static analysis)

Контроль над контекстом исполнения (больше нельзя просто вставить переменную как есть — нужно передать её явно)

📦 Использование:
t-строки — это первый шаг к "template string literals" как в TypeScript.

Можно использовать с функциями:


def html(template: T[str]) -> SafeHTML:
...

html(t"<div>{user_input}</div>")


💡 Почему это важно?
Старый код:


f"SELECT * FROM users WHERE name = '{user_name}'"
может привести к SQL-инъекциям и XSS.
t-строки — безопасная альтернатива с встроенной защитой.


🛡 Пример: безопасный HTML

template = t"<p>{user_input}</p>"
html_output = html(template)
# <p>&lt;script&gt;alert('bad')&lt;/script&gt;</p>

Функция html() может вернуть не просто строку, а полноценный HTMLElement.
Больше никакой "грязи" — всё чисто и типобезопасно.

🔍 Работа с шаблоном
t-строки позволяют получить доступ к содержимому:


template = t"Hello {name}!"
template.strings # ("Hello ", "!")
template.values # (name,)
template.interpolations[0].format_spec # ">8"

Можно и вручную собрать шаблон:


Template("Hello ", Interpolation(value="World", expression="name"), "!")


🚀 Вывод:
t"..." — шаг к безопасным шаблонам и типизации строк в Python.
Готовься к будущему Python — безопасному по умолчанию.

📌 Подробнее здесь

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Как повысить свои навыки в аналитике данных за 90 минут?

Прийти на бесплатный практический урок 28 апреля, где мы расскажем, как эффективно работать с данными с помощью Python и Pandas: как заполнять пропуски, устранять дубликаты и правильно работать с выбросами.

👥 Кому будет полезен вебинар?
- тем, кто только начинает свой путь в Data Science и хочет освоить базовые навыки
- тем, кто работает с данными в электронных таблицах, но хочет перейти на Python и Pandas
- тем, кто сталкивался с ошибками при анализе из-за «мусора» в данных
- тем, кто планирует изучать машинное обучение (ML), где чистота данных критически важна

📍 Зарегистрируйтесь и получите скидку на большое обучение «Специализация Machine Learning»: https://otus.pw/UkAO/?erid=2W5zFG6E7sW

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
This media is not supported in your browser
VIEW IN TELEGRAM
Zev 🔍

Это помощник для работы с терминалом на естественном языке.

Он помогает быстро находить нужные команды и сохранять их в избранное, а его простой и понятный интерфейс делает освоение терминала доступным даже для новичков.

pip install zev

📌 Github

@pythonl
Пропал опытный разработчик!

Нашедшему просьба обратиться в Ozon Tech.
Вознаграждение за рекомендацию 150 000 ₽ гарантируют.

Особые приметы, требования, условия на этой странице ⬅️
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 PDF Craft — библиотека на Python для конвертации PDF (в первую очередь сканированных книг) в Markdown и EPUB с использованием локальных AI-моделей и LLM для структурирования содержимого
GitHub

🌟 Основные возможности

- Извлечение текста и макета
Использует сочетание DocLayout-YOLO и собственных алгоритмов для детектирования и фильтрации заголовков, колонтитулов, сносок и номеров страниц

- Локальный OCR
Распознаёт текст на странице через OnnxOCR, поддерживает ускорение на GPU (CUDA)

- Определение порядка чтения
С помощью layoutreader строит поток текста в том порядке, в котором его воспринимает человек

- Конвертация в Markdown
Генерирует .md с относительными ссылками на изображения (иллюстрации, таблицы, формулы) в папке assets

- Конвертация в EPUB
На основе промежуточных результатов OCR передаёт данные в LLM (рекомендуется DeepSeek) для построения оглавления, глав, корректировки ошибок и включения аннотаций

Установка и требования
Python ≥ 3.10 (рекомендуется 3.10.16).

pip install pdf-craft и pip install onnxruntime==1.21.0 (или onnxruntime-gpu==1.21.0 для CUDA).

Для EPUB-конвейера нужен доступ к LLM-сервису (например, DeepSeek).

🟡 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Твой Senior зарабатывает 800к не потому, что он умнее тебя!

Если ты:
– мучаешься от синдрома самозванца
– устал от токсичности в IT
– не понимаешь, как пройти собеседование в топовые компании
– думаешь «я не дорос/туповат/не готов» (спойлер: это не так!)

…тебе нужно на островок поддержки в мире IT.

Это канал Глеба Михайлова, который прошел путь от тупящего на собесах аналитика до дата саентиста, который поддерживает, вдохновляет и помогает другим процветать в суровой и токсичной IT-индустрии.

Здесь ты найдешь:

– разбор реальных задач с технических собесов (без занудства)
– рабочие советы по подготовке от человека, который работал в Сбере, Альфа-Банке и Яндексе
– инсайты про то, как пройти собеседования в топовых компаниях
– занимательные истории из корпоративной жизни, после которых ты поймешь, что везде работают обычные люди.

Подписывайся на канал, если хочешь расти в IT без токсичности, занудства и пафоса.


Реклама
👾 FlexGet — инструмент, превращающий рутинные задачи в автоматизированные workflows: от скачивания сериалов по RSS до организации медиатеки.

Особенно удобна модульная архитектура проекта. Базовый функционал составляет 150+ плагинов для интеграции с qBittorrent, Plex и другими сервисами. При этом вся логика описывается с помощью декларирования.

🤖 GitHub

@pythonl
🔹 1000 гайдов для разработчиков в одном репозитории!

Разработчик из Твиттера собирал этот настоящий кладезь знаний целых 10 лет.

Внутри — буквально всё:
от шпаргалок по горячим клавишам для ускорения работы до фундаментальных руководств по языкам программирования, веб-разработке, созданию ПО, сетям, безопасности и многому другому.

Что там есть:

📚 Инструменты для работы с CLI, GUI, вебом и локальными сетями.

📦 Списки всех актуальных фреймворков и библиотек 2025 года.

🛡 Гайды по тестированию и взлому приложений.

🔥 Шпаргалки по командной строке.

📰 Огромная подборка блогов, YouTube-каналов, онлайн-СМИ и журналов, чтобы быть в курсе и не терять хватку.

Фолиант знаний ждёт тебя!

📌 Github

@pythonl