⚡️ Почему лучшие разработчики всегда на шаг впереди?
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Devops: t.me/DevOPSitsec
Базы данных: t.me/sqlhub
Мл собес t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
МЛ: t.me/machinelearning_ru
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/java_library
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Физика: t.me/fizmat
SQL: t.me/databases_tg
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🖥 Chatgpt для кода в тг: @Chatgpturbobot -
📕Ит-книги: https://yangx.top/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.me/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Devops: t.me/DevOPSitsec
Базы данных: t.me/sqlhub
Мл собес t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
МЛ: t.me/machinelearning_ru
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/java_library
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Физика: t.me/fizmat
SQL: t.me/databases_tg
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
📕Ит-книги: https://yangx.top/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.me/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2🔥2
🐍 Задача: Реализация декоратора `@smart_cache` с интеллектуальным кэшированием
📌 Описание
Реализуйте декоратор
1. Интеллектуальная очистка кэша — автоматически удаляет старые записи при превышении лимита
2. Поддержка разных стратегий вытеснения — LRU, LFU, FIFO
3. Таймаут кэша — автоматическое удаление записей по времени
4. Метрики использования — сбор статистики по попаданиям/промахам
5. Потокобезопасность — корректная работа в многопоточной среде
6. Поддержка методов классов — корректная работа с
🧩 Пример использования
🛠 Требования к реализации
- Используйте только стандартную библиотеку Python
- Поддержка Python 3.7+
- Все стратегии вытеснения должны быть реализованы (LRU, LFU, FIFO)
- TTL должен работать как для отдельных записей, так и глобально
- Статистика должна включать: hits, misses, evictions, current_size
- Декоратор должен корректно работать с kwargs, *args
- Потокобезопасность через threading.Lock или аналоги
🧪 Бонусное задание
Реализуйте методы:
- cache_info() — подробная информация о текущем состоянии кэша
- cache_warmup(**kwargs) — предварительное заполнение кэша
- cache_persist(filename) — сохранение кэша в файл
- cache_load(filename) — загрузка кэша из файла
@python_job_interview
📌 Описание
Реализуйте декоратор
@smart_cache
, который кэширует результаты функции с учетом следующих требований:1. Интеллектуальная очистка кэша — автоматически удаляет старые записи при превышении лимита
2. Поддержка разных стратегий вытеснения — LRU, LFU, FIFO
3. Таймаут кэша — автоматическое удаление записей по времени
4. Метрики использования — сбор статистики по попаданиям/промахам
5. Потокобезопасность — корректная работа в многопоточной среде
6. Поддержка методов классов — корректная работа с
self
и cls
🧩 Пример использования
import time
from threading import Thread
@smart_cache(maxsize=100, strategy='LRU', ttl=300, collect_stats=True)
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-1) + fibonacci(n-2)
class MathUtils:
@smart_cache(maxsize=50, strategy='LFU', ttl=600)
def expensive_calc(self, x, y):
time.sleep(0.1) # Имитация тяжелых вычислений
return x ** y + y ** x
# Использование
print(fibonacci(10)) # Вычисление
print(fibonacci(10)) # Из кэша
# Получение статистики
stats = fibonacci.cache_stats()
print(f"Cache hits: {stats['hits']}, misses: {stats['misses']}")
# Принудительная очистка
fibonacci.cache_clear()
# Многопоточное использование
def worker():
for i in range(5):
fibonacci(i)
threads = [Thread(target=worker) for _ in range(3)]
for t in threads:
t.start()
for t in threads:
t.join()
🛠 Требования к реализации
- Используйте только стандартную библиотеку Python
- Поддержка Python 3.7+
- Все стратегии вытеснения должны быть реализованы (LRU, LFU, FIFO)
- TTL должен работать как для отдельных записей, так и глобально
- Статистика должна включать: hits, misses, evictions, current_size
- Декоратор должен корректно работать с kwargs, *args
- Потокобезопасность через threading.Lock или аналоги
🧪 Бонусное задание
Реализуйте методы:
- cache_info() — подробная информация о текущем состоянии кэша
- cache_warmup(**kwargs) — предварительное заполнение кэша
- cache_persist(filename) — сохранение кэша в файл
- cache_load(filename) — загрузка кэша из файла
@python_job_interview
❤9👍2🔥1
Хочешь знать, что происходит внутри ИТ крупного банка?
Команда ПСБ рассказывает о работе и жизни в блоке ИТ!
🔹 Знакомься с командой, их проектами и хобби
🔹 Участвуй в активностях: митапы, конференции, спорт
🔹 Читай и комментируй экспертные статьи
Подписывайся на канал ИТ ПСБ !
Команда ПСБ рассказывает о работе и жизни в блоке ИТ!
🔹 Знакомься с командой, их проектами и хобби
🔹 Участвуй в активностях: митапы, конференции, спорт
🔹 Читай и комментируй экспертные статьи
Подписывайся на канал ИТ ПСБ !
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
🐍 Печатай переменные с их именами без повторов — с помощью f‑строк и := (walrus operator)
Вместо этого:
Пиши так:
🔥 А ещё лучше — используем
✅ Это одновременно сохранит
Вместо этого:
print(f"x = {x}, y = {y}, z = {z}")
Пиши так:
print(f"{x=}, {y=}, {z=}")
x=42, y='hello', z=[1, 2, 3]
🔥 А ещё лучше — используем
:=
(оператор моржа) для печати и присваивания одновременно:
print(f"{(n := len(mylist))=}")
✅ Это одновременно сохранит
len(mylist)
в n
и выведет его:
n=5
👍9❤3🔥2