Python RU
13.4K subscribers
857 photos
39 videos
36 files
1.11K links
Все для python разработчиков

админ - @haarrp

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
加入频道
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Haskell: t.me/haskell_tg

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy
⭐️ Samhaxr/VTScanner

Комплексный инструмент безопасности на базе Python для сканирования файлов, обнаружения вредоносных программ и анализа в условиях постоянно развивающегося киберландшафта.

Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⭐️ LLM-Reasoner

Инструмент, который поможет добавить рассждуения в ваши LLM проекты , подобно OpenAI o1 и deepseek R1.

Функции:
🧠 Пошаговые рассуждения: Больше никаких ответов из «черного ящика»! Узнайте, как именно мыслит ваш LLM, по аналогии с O1.
🔄 Прогресс в реальном времени: позволяет наблюдать за ходом рассуждений с помощью плавных анимаций
🎯 Поддержка множества LLM провайдеров: Работает со всеми провайдерами LiteLLM
🎮 Streamlit: Удобный пользовательский интерфейс
🛠️ Поддердка CLI: для тех, кто любит возиться с командной строкой.
📊 Проверка уверенности ответа: Узнайте, насколько уверен ваш LLM в каждом шаге рассуждений.

⭐️ Установка:
pip install llm-reasoner

Пример с кодом:

from llm_reasoner import ReasonChain
import asyncio

async def main():
# Create a chain with your preferred settings
chain = ReasonChain(
model="gpt-4", # Choose your model
min_steps=3, # Minimum reasoning steps
temperature=0.2, # Control creativity
timeout=30.0 # Set your timeout
)

# Watch it think step by step!
async for step in chain.generate_with_metadata("Why is the sky blue?"):
print(f"\nStep {step.number}: {step.title}")
print(f"Thinking Time: {step.thinking_time:.2f}s")
print(f"Confidence: {step.confidence:.2f}")
print(step.content)

asyncio.run(main())


@ai_machinelearning_big_data


#llm #ml #ai #opensource #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
🎲 Теория вероятностей играет ключевую роль в машинном обучении, статистике и анализе данных.

В этой статье мы разберем 12 задач, которые помогут лучше понять применение теории вероятностей на практике с использованием Python.

✔️ Читать статью
Please open Telegram to view this post
VIEW IN TELEGRAM
Анализ частых ошибок при написании кода middle-разработчиками и способы их решения

Разработчики уровня middle обладают определённым опытом и знанием технологий, однако на этом этапе всё ещё часто встречаются ошибки, которые могут снижать качество кода, усложнять его поддержку и влиять на производительность приложений.

В этой статье мы разберём наиболее распространённые ошибки и предложим эффективные методы их устранения.

✔️ Читать статью
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Копировать-Вставить, с помощью Python.
Please open Telegram to view this post
VIEW IN TELEGRAM
💌 Валентина от программиста — краткое руководство всего в трех шагах:

1. Открываем сайт
2. Вставляем код.


Python
print('\n'.join
([''.join
([('Name'[(x-y)%4 ]
if((x*0.05)**2+(y*0.1)**2-1)
**3-(x*0.05)**2*(y*0.1)
**3<=0 else ' ')
for x in range(-30,30)])
for y in range(15,-15,-1)]))


3. Сохраняем результат и отправляем по адресу 💌
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🖥 PdfDing — это менеджер, просмотрщик и редактор PDF-файлов, обеспечивающий удобную работу на различных устройствах!

🌟 Он позволяет просматривать PDF-документы непосредственно в браузере, сохраняя позицию чтения для последующего продолжения с того же места. Пользователи могут организовывать свои PDF-файлы с помощью многоуровневых тегов, добавлять аннотации, выделения и рисунки, а также использовать такие функции, как темный режим, инвертированные цвета и настраиваемые цветовые темы. Кроме того, PdfDing поддерживает единый вход (SSO) через OIDC и предоставляет возможность делиться PDF-файлами с внешними пользователями посредством ссылок или QR-кодов с опциональным контролем доступа.

🔐 Лицензия: GPL-3.0

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Podcastfy — это open-source инструмент, который преобразует текстовый контент в аудио подкасты с использованием синтеза речи.

Он позволяет легко создавать аудиоверсии статей или блогов, упрощая процесс создания подкастов для контент-мейкеров, блогеров или в целях обучения.

🌟 Поддерживает интеграцию с ElevenLabs, OpenAI и Edge TTS, для преобразования текста в речь.

💡 Примеры можно посмотреть здесь.

💨 Поддерживает продвинутые настройки для работы с голосами, стилем речи и другими параметрами. с генеративным контентом.

Установка:
$ pip install podcastfy

Podcastfy — удобный и простой в использовании инструмент для быстрого прототипирования решений по автоматическому созданию аудиоконтента и интеграции в более крупные ML-проекты.

🔐 Лицензия: Apache-2.0

Github
Paper
Colab


@ai_machinelearning_big_data


#podcast #gemini #openai #elevenlabs #genai #notebooklm
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Курс: Базовое приложение на FastAPI!

🕖 Продолжительность: 1:41:06

🔗 Ссылка: *клик*

#курс #python #fastapi
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Haskell: t.me/haskell_tg

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy
🐧10 малоизвестных, но мощных команд Linux, которые помогут усилить безопасность вашей системы

📌
Читать
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🖥 ScrapeServ — это API, который принимает URL и возвращает файл с данными веб-сайта и его скриншотами!

🌟 Он разработан для запуска в Docker-контейнере и использует браузерные технологии для обработки JavaScript на страницах. Среди возможностей ScrapeServ — прокрутка страницы с созданием скриншотов различных разделов, автоматическая обработка перенаправлений и корректная работа с ссылками на загрузку файлов. Задачи обрабатываются в очереди с настраиваемым распределением памяти, обеспечивая эффективное использование ресурсов.

🔐 Лицензия: MIT

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Разбор задач с собеседований по статистике для Дата Саентистов

В современных собеседованиях на позицию Data Scientist кандидатов проверяют не только практические навыки программирования, но и глубокое понимание статистических методов.

В данной статье рассмотрены часто встречающиеся задач, которые могут встретиться на интервью. Разберём каждую задачу с теоретической точки зрения, а также продемонстрируем пример кода на Python.

📌 Читать

@pro_python_code
Машинное и глубокое обучение ОНЛАЙН-УЧЕБНИК Виктор Владимирович Китов

Учебник содержит выжимку основных материалов на основе читаемых автором курсов на факультете вычислительной математики и кибернетики (ВМК) в МГУ им. М.В.Ломоносова, а также в магистратуре Т-Банка для студентов МФТИ.

Этот онлайн-учебник посвящен увлекательной, перспективной и бурно развивающейся теме машинного обучения (machine learning) и глубокого обучения (deep learning), позволяющей наделять компьютерные программы возможностью принимать сложные интеллектуальные решения, автоматически настраиваемые по наблюдаемым данным. В первой части учебника (машинное обучение) рассматриваются основные задачи и понятия машинного обучения, методы их решения, оценка качества результатов и способы интерпретации моделей машинного обучения. Во второй части (глубокое обучение) изучаются нейронные сети, способы их эффективной настройки и архитектуры для решения различных задач.

Цель учебника состоит в том, чтобы предоставить образовательные материалы в открытый доступ для широкого круга читателей, как совсем не знакомых с областью, так и имеющих в ней некоторый опыт. Описание даётся как на интуитивном уровне, так и используя математические выкладки, поэтому предполагается знакомство читателя с основами математического анализа, теории вероятностей и математической статистикой. За исключением основ высшей математики, учебник полностью самодостаточный. Предварительного знакомства читателя с машинным обучения не требуется, поскольку в учебнике описывается весь цикл разработки моделей от постановки задачи и подготовки данных до оценки качества прогнозов и интерпретации результатов.

Для обратной связи по сайту, материалам и общим вопросам пишите на [email protected].

С правами использования материала учебника вы можете ознакомиться в разделе лицензия.

Разработка и систематизация материалов поддержана грантом некоммерческого фонда развития науки и образования «Интеллект».

📓 Ссылка на книгу