Python RU
13.5K subscribers
914 photos
52 videos
38 files
1.16K links
Все для python разработчиков

админ - @workakkk

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
加入频道
Forwarded from Python/ django
👩‍💻 Wowy — это шаблон интернет-магазина, построенный на Django 4.x, который предоставляет полный набор функций для управления!

🌟 Она обеспечивает удобный пользовательский интерфейс и мощную панель администратора. Включает поддержку управления товарами (с множеством изображений), управление категориями, корзину, список желаний, генерацию PDF-счетов и детальную аналитику продаж.

🔐 Лицензия: MIT

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51
Forwarded from Machinelearning
🤖 Modern Robotics Course: Открытый курс по современной робототехнике.

Курс сочетает теорию (математика, физика) и практику (код, симуляторы), помогая разработчикам научиться создавать и программировать роботов.

🌟 Что внутри?
Лекции: От основ робототехники, математики и физики до пространственных преобразований, обратной кинематике и более продвинутым концепциям .
Практика: Примеры кода на Python и C++ для управления роботами.
Симуляторы: Интеграция с стимуляторами Gazebo и ROS ( операционная система для робото) для тестирования алгоритмов.
Задания: Реальные практические задачи (например, управление манипулятором робота).

🌟 Для кого?
Начинающие робототехники: Освоить кинематику, динамику, управление.
Программисты: Интегрировать алгоритмы в ROS, Gazebo, Python/C++.
Инженеры: Возможность Научиться разрабатывать автономные системы и манипуляторы.
Технологические энтузиасты

С курсом можно пройти путь от нуля до создания рабочего прототипа.

С курсом у вас будет возможность проектировать роботов, не имея железа под рукой (через симуляторы).

✔️ Готовые решения: Внутри вы найдете библиотеки для работы с преобразованиями, датчиками, движением.

✔️Карьера в робототехнике: Курс даст возможность получить базовые навыки, востребованные в Bosch, Boston Dynamics, Tesla.

⭐️ Преимущества перед другими открытыми курсами
🟠 Акцент на практике: Минимум абстракций — максимум кода.
🟠Совместимость с ROS: Стандарт для промышленной робототехники.
🟠 Современные алгоритмы: Не только классика, но и нейросетевые подходы.

➡️ Cовет: Для погружения в курс, вам поможет книга Robotics, Vision and Control: Fundamental Algorithms in Python, Peter Corke, вот ее репозиторий с примерами кода.

P.S. Для тех, кто любит формат «сделай сам»: Курс научит вас собирать робота виртуально, а потом переносить решения на реальные устройства. 🤖💡

✔️ Github
✔️ Введение в курс

#course #ai #ml #robots #education #курс #робототехника
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43👎1
🔥SQLGlot — это мощный парсер SQL и оптимизатор, написанный полностью на Python. Он поддерживает 24+ диалектов, включая DuckDB, Presto/Trino, Snowflake и BigQuery, позволяя конвертировать запросы между ними с сохранением смысла.

📝 Основные преимушества:
- Гибкость: парсер можно легко кастомизировать под свои нужды
- Надежность: проект имеет более 1000 тестов и активное сообщество
- Проивзодительность: несмотря на медленную скорость языка парсер работает очень быстро.

👾 Github

@pro_python_code
👍32🔥2
Forwarded from Python/ django
🖥 "Think Python" - баспланая книга от O'Reilly

Одна из лучших книг для изучения Python.

❤️‍🔥Как вам обложка?

3 издание
2 издание

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72
🖥 YT Channel Downloader — интуитивно понятное приложение с графическим интерфейсом созданное для скачивания медиаконтента с YouTube.

Используя надежность библиотек yt-dlp, Scrapetube и pytube и дополненный современным графическим интерфейсом на PyQt 6, этот инструмент обеспечивает удобную загрузку вашего любимого контента.


🔗 GitHub

#python #github #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🥰3👍21
👍2🤬1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🥹 Pokemon Gym — среда для обучения агентов игре Pokémon Red/Blue.

Интерфейс, похожна стандартные среды RL (например, OpenAI Gym/Gymnasium), но адаптированный для игры Pokémon Red/Blue.

Если хотите позалипать на выходных и попробовать различные RL-алгоритмы для обучения Ai игре в покемонов.

В основе лежит эмулятор Game Boy, реализованный на Python — библиотека pyboy.

Основная цель — создать и обучить ИИ-агентов, способных самостоятельно играть в Pokémon: исследовать мир, ловить покемонов, тренировать их, сражаться с другими тренерами и проходить игру.

Игроку любителю потребуется ~400 шагов, чтобы поймать первого покемона, Клоду 3.7 понадобилось ~450 🤗

🔗 Github

@ai_machinelearning_big_data


#AIagents #ml #ai #opengym
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥32👍2
🔥16
✔️ Microsoft выпустила в опенсорс библиотеку MarkItDown на Python для преобразования файлов в Markdown

MarkItDown представляет собой эффективное средство для конвертации различных типов файлов и документов в формат Markdown. Эта библиотека идеально подходит для анализа, индексирования и систематизации данных.

Вот перечень поддерживаемых форматов:
— PDF, PowerPoint, Word, Excel.
— Изображения (в том числе EXIF-данные и распознавание текста с помощью OCR).
— Аудио (метаданные и расшифровка речи).
— HTML (включая специализированную обработку контента из Wikipedia).
— Текстовые форматы: CSV, JSON, XML и другие.
MarkItDown Github

@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
👍71
Forwarded from Python/ django
🖥 Разработка игры в стиле Mario с нуля на Python

Создание собственной игры в духе легендарного Super Mario Bros — это отличный способ прокачать навыки программирования, погрузиться в основы геймдева и просто повеселиться.

Гайд по разработке простой платформенной игры с нуля Python, используя библиотеку Pygame.

📌 Гайд

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍3
👩‍💻 Docker - признанный обучающий канал о Devops и Docker

С помощью картинок и шортсов даже новички научаться применять продвинутые инструменты разработчика и контейнеры.

Стоит подписаться: t.me/DevopsDocker
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥1
🐍 Задача по Python: Ловушка замыканий

Что выведет следующий код?


def create_funcs():
funcs = []
for i in range(3):
def f():
return i
funcs.append(f)
return funcs

for func in create_funcs():
print(func())


Варианты ответа:
A)

1
2


B)

2
2


C)

0
0


D) Ошибка выполнения


---

Правильный ответ: B

Почему:
Это классическая late binding: функция
f() не сохраняет значение i на момент создания, а берёт его из текущей области видимости при вызове.
К моменту вызова
i == 2 (последнее значение в range(3)), поэтому все три функции возвращают 2.

Чтобы избежать этого — можно использовать аргументы по умолчанию:
def f(i=i): return i
👍91🥰1