Python RU
13.4K subscribers
871 photos
41 videos
36 files
1.12K links
Все для python разработчиков

админ - @haarrp

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
加入频道
Forwarded from Machinelearning
🌟 YOLOE — это усовершенствованная версия алгоритма обнаружения объектов, вдохновлённая классической архитектурой YOLO и разработанная командой THU-MIG.

Архитектура YOLO (You Only Look Once) получила своё название благодаря подходу, при котором нейронная сеть анализирует всё изображение целиком за один проход, чтобы определить присутствие и расположение объектов. Это отличается от других методов, которые сначала выделяют потенциальные области с объектами, а затем отдельно классифицируют их, что требует нескольких обработок одного изображения

YOLOE сохраняет принцип однократного взгляда на изображение для детекции объектов, но вносит архитектурные улучшения, направленные на повышение точности и эффективности модели.

Ключевые отличия от классического YOLO:

- Оптимизированная архитектура: В YOLOE внедрены новые подходы для более эффективной обработки признаков, что позволяет улучшить качество детекции без значительного увеличения вычислительных затрат.
- Повышенная точность: Улучшенные модули и методы, такие как ре-параметризация отдельных блоков, способствуют более точному обнаружению объектов, включая мелкие и сложно различимые элементы.
- Скорость и эффективность: YOLOE сохраняет высокую скорость инференса, делая его пригодным для задач в реальном времени, при этом обеспечивая конкурентоспособное соотношение производительности и точности.

▶️YOLOE требует в 3 раза меньших затрат на обучение по сравнению с YOLO-Worldv2, что делает процесс обучения более экономичным

YOLOE представляет собой современное и улучшенное решение для задач детекции объектов, совмещающее лучшие стороны классического YOLO с новыми архитектурными подходами.

🖥Github
🟡Статья
🟡HF
🟡Colab

#yoloe #opensource #ml #ai #yolo #objectdetection
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🤖 Modern Robotics Course: Открытый курс по современной робототехнике.

Курс сочетает теорию (математика, физика) и практику (код, симуляторы), помогая разработчикам научиться создавать и программировать роботов.

🌟 Что внутри?
Лекции: От основ робототехники, математики и физики до пространственных преобразований, обратной кинематике и более продвинутым концепциям .
Практика: Примеры кода на Python и C++ для управления роботами.
Симуляторы: Интеграция с стимуляторами Gazebo и ROS ( операционная система для робото) для тестирования алгоритмов.
Задания: Реальные практические задачи (например, управление манипулятором робота).

🌟 Для кого?
Начинающие робототехники: Освоить кинематику, динамику, управление.
Программисты: Интегрировать алгоритмы в ROS, Gazebo, Python/C++.
Инженеры: Возможность Научиться разрабатывать автономные системы и манипуляторы.
Технологические энтузиасты

С курсом можно пройти путь от нуля до создания рабочего прототипа.

С курсом у вас будет возможность проектировать роботов, не имея железа под рукой (через симуляторы).

✔️ Готовые решения: Внутри вы найдете библиотеки для работы с преобразованиями, датчиками, движением.

✔️Карьера в робототехнике: Курс даст возможность получить базовые навыки, востребованные в Bosch, Boston Dynamics, Tesla.

⭐️ Преимущества перед другими открытыми курсами
🟠 Акцент на практике: Минимум абстракций — максимум кода.
🟠Совместимость с ROS: Стандарт для промышленной робототехники.
🟠 Современные алгоритмы: Не только классика, но и нейросетевые подходы.

➡️ Cовет: Для погружения в курс, вам поможет книга Robotics, Vision and Control: Fundamental Algorithms in Python, Peter Corke, вот ее репозиторий с примерами кода.

P.S. Для тех, кто любит формат «сделай сам»: Курс научит вас собирать робота виртуально, а потом переносить решения на реальные устройства. 🤖💡

✔️ Github
✔️ Введение в курс

#course #ai #ml #robots #education #курс #робототехника
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🥹 Pokemon Gym — среда для обучения агентов игре Pokémon Red/Blue.

Интерфейс, похожна стандартные среды RL (например, OpenAI Gym/Gymnasium), но адаптированный для игры Pokémon Red/Blue.

Если хотите позалипать на выходных и попробовать различные RL-алгоритмы для обучения Ai игре в покемонов.

В основе лежит эмулятор Game Boy, реализованный на Python — библиотека pyboy.

Основная цель — создать и обучить ИИ-агентов, способных самостоятельно играть в Pokémon: исследовать мир, ловить покемонов, тренировать их, сражаться с другими тренерами и проходить игру.

Игроку любителю потребуется ~400 шагов, чтобы поймать первого покемона, Клоду 3.7 понадобилось ~450 🤗

🔗 Github

@ai_machinelearning_big_data


#AIagents #ml #ai #opengym
Please open Telegram to view this post
VIEW IN TELEGRAM