Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply()
вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier
или PCA
из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().
Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
Используя надежность библиотек yt-dlp, Scrapetube и pytube и дополненный современным графическим интерфейсом на PyQt 6, этот инструмент обеспечивает удобную загрузку вашего любимого контента.
🔗 GitHub
#python #github #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Новый Function (fxn) — фреймворк, который компилирует Python-функции в нативный код с производительностью, сравнимой с Rust.
🧠 Как это работает?
- Использует символическое трассирование на CPython для анализа функций
- Генерирует промежуточное представление (IR)
- Транслирует IR в C++ или Rust, а затем компилирует в бинарный код
- Поддерживает платформы: Linux, Android, WebAssembly и др.
📦 Пример:
@compile
def fma(x: float, y: float, z: float) -> float:
return x * y + z
После компиляции вы получаете нативный бинарник, который можно запускать без интерпретатора Python.
🔗 Подробнее
🔗 Github
@pro_python_code
#Python #Rust #fxn #Compiler #Performance #AI #ML #Wasm
Please open Telegram to view this post
VIEW IN TELEGRAM