Python RU
13.3K subscribers
893 photos
45 videos
38 files
1.14K links
Все для python разработчиков

админ - @workakkk

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
加入频道
Руководство_по_ускорению_и_оптимизации_Python_кода.pdf
264.6 KB
🖥 Руководство по ускорению и оптимизации Python-кода

В этом руководстве рассмотрены продвинутые техники оптимизации Python-программ, особенно актуальные для backend-разработки.

Здесь разобрано профилирование, выбор структур данных и алгоритмов, эффективное использование стандартной библиотеки, оптимизацию циклов, применение таких инструментов как Numba/Cython/PyPy, параллелизм и асинхронность, работу с вводом-выводом, кеширование, обработку больших данных, компиляцию/упаковку кода и общие советы по написанию быстрого и поддерживаемого кода.
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Создавай технологии, которые меняют рынок 💻
 
На AIFT учат не просто ИИ. Здесь создают людей, которые меняют финтех.

Магистратура от Сбера, РЭШ и Сколтеха — это экономика, финансы, машинное обучение, цифровой банкинг и реальный опыт.
 
Что ты получишь ⤵️

— проектную работу со Сбером
— самых сильных экспертов рынка
— доступ к инфраструктуре и карьерным возможностям
— стипендию и сразу два диплома
 
Поступай, пока набор открыт: до сентября 2025 👌
👉 Удаление фона изображения на Python
🐳 Зачем и как контейнеризировать Python-приложения?

Контейнеризация — не просто модный DevOps-термин. Это способ упаковать твоё Python-приложение так, чтобы оно запускалось одинаково везде — локально, на сервере и в облаке.

🔥 Зачем это нужно:
никакого "у меня работает, а у него — нет"
изолированные зависимости и окружение
быстрый деплой и масштабирование
меньше багов при переносе между средами

📦 Простой Dockerfile для Python:

FROM python:3.10-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["python", "main.py"]


🧪 Дальше всё просто:


docker build -t my-python-app .
docker run -it my-python-app


🎯 Добавь .dockerignore, настрой .env, используй docker-compose, а для продакшена — оптимизируй образ под размер и безопасность.

📌 Если твой Python-проект всё ещё живёт в "сыром" виде — пора пересесть на контейнеры.

🔗 Полный гайд:
https://www.kdnuggets.com/why-how-to-containerize-your-existing-python-apps
📊 Шпаргалка по Python-профайлингу: как найти узкие места в коде

Разбираем 4 мощных инструмента для анализа производительности и памяти в Python.

🧠 `cProfile` — встроенный профайлер времени

Показывает, сколько времени тратится на каждую функцию
Идеально для быстрого анализа


python -m cProfile your_script.py


Форматированный вывод с pstats:


python -m cProfile -o result.prof your_script.py
python -m pstats result.prof


Для Jupyter:


%load_ext cprofile
%cprofile some_function()


🐍 py-spy — суперлёгкий sampling-профайлер

Не требует изменений в коде
Работает с чужими процессами
Без тормозов, можно запускать в проде


py-spy top --pid <PID>
py-spy record -o profile.svg -- python your_script.py


👉 Показывает flame graph: удобная визуализация bottleneck-функций.

🔥 `Scalene` — профайлинг CPU, памяти и аллокаций

Отслеживает:
- сколько времени тратит CPU
- где происходят аллокации
- сколько памяти реально используется


pip install scalene
scalene your_script.py


👉 Выделяет проблемные строки, показывает выделение памяти по строчкам кода, а не только по функциям.

🧮 `memory_profiler` — анализ использования памяти

Показывает, сколько памяти потребляет каждая строка
Полезен для data science скриптов


pip install memory-profiler


Добавь декоратор:


from memory_profiler import profile

@profile
def my_func():
...


Запуск:


python -m memory_profiler your_script.py


💡 Как выбрать?

| Инструмент | Что профилирует | Подходит для |
|--------------------|----------------------|------------------------------|
| `cProfile` | Время (встроенно) | Быстрый старт, базовый анализ |
| `py-spy` | Время (sampling) | Прод, чужие процессы, flame graphs |
| `Scalene` | Время + память + аллокации | Глубокий анализ по строкам |
| `memory_profiler` | Только память | Data science, отладка RAM |
СРОЧНО❗️Закидываем мастхев-каналы для Python и Java разработчиков.

➡️Прокачай свои хард-скиллы на максимум:
Pythoner и Javer

➡️Сотни гигов платных материалов, книг и статей:
Книжный python и Библиотека Java

➡️Скрипты, фишки и конечно же мемы:
IT HUB и Memes

Доступ открыли на 48 часов, успейте подписаться!
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🎯 5 ИИ-проектов, которые ты можешь собрать за выходные

Хочешь прокачать навыки ML и Python без математики и Kaggle? Лови 5 готовых идей, которые можно собрать за 1–2 дня:

🔹 Голосовой ассистент — Whisper + GPT + озвучка
🔹 Чат-бот для PDF — LangChain + FAISS + OpenAI
🔹 Генератор картинок — Stable Diffusion + Gradio
🔹 Подписи к фото — BLIP + HuggingFace
🔹 TL;DR бот — BART или GPT для суммаризации текста

Примеры кода
Деплой на HuggingFace / Streamlit
Всё реально собрать за выходные

📎 Забирай гайд — и добавь проекты в резюме: «AI developer: checked»

@pythonl
Forwarded from Machinelearning
✔️ Cursor 1.0 — стабильный релиз с полезными фичами

Новая стабильная версия Cursor, и в ней появилось много обновлений, которые делают работу с кодом удобнее.

Вот что стоит отметить:

🐞 Bugbot
Автоматически проверяет Pull Request'ы на баги и предлагает исправления.
Можно внести правку прямо в редакторе — в один клик.

🧠 Memory (beta)
Cursor теперь запоминает контекст проекта, что помогает при командной работе и упрощает навигацию по коду.

⚙️ One-Click MCP Setup
Настройка подключения к Model Context Protocol — теперь через одну кнопку, без ручной конфигурации.

📌 Дополнительно в 1.0:
• Возможность редактировать несколько мест в коде одновременно
• Поддержка таблиц, Markdown и диаграмм Mermaid в чате
• Обновлённые настройки и админ-панель
• Фоновая работа агентов — можно интегрировать их со Slack и Jupyter Notebooks

Cursor постепенно становится более удобной средой для совместной работы с ИИ-помощником.

https://www.cursor.com/changelog

@ai_machinelearning_big_data

#CursorAI #AIcoding #DevTools #Jupyter #CodeAssistant
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
from contextlib import contextmanager
import sys
import io

@contextmanager
def capture_stdout():
old_stdout = sys.stdout
sys.stdout = buffer = io.StringIO()
try:
yield buffer
finally:
sys.stdout = old_stdout

# Пример использования
with capture_stdout() as out:
print("Это вывод, который перехвачен")

captured_output = out.getvalue()
print("Перехваченный текст:", captured_output)


🧠 Объяснение:
Этот хак позволяет временно перенаправить стандартный вывод print() внутрь объекта StringIO, чтобы «тихо» перехватить и сохранить его. Полезно для:

• тестирования CLI-приложений
• логирования скрытого вывода
• подавления шума в stdout во время исполнения кода

Работает как контекстный менеджер, не требует сторонних библиотек, и легко встраивается в production-код.
🔍 В Яндекс Поиске появились технологии Алисы: теперь он рассуждает в ответ на вопрос и генерирует контент

Поиск Яндекса обновился. Там появился режим рассуждений, возможность генерировать контент, получать развёрнутые ответы, и помогать с выбором товаров. Всё это — благодаря объединению с технологиями Алисы, которые унаследовали и расширили возможности Нейро.

Что поменялось:
— Новые ответы Алисы:готовая небольшая статья с картинками, видео и ссылками на источники.
— Можно попросить сгенерировать текст или картинку прямо в поисковой строке — например, по запросам “напиши” или “нарисуй”.
— Появился режим рассуждений: для сложных задач, где важно углубиться в тему. В этом режиме Алиса тратит больше времени на анализ информации, задействует больше источников и может дать ответ в виде таблицы. Пользователь может посмотреть, как она подходит к задаче и какие выводы делает.
— Пользователи Браузера теперь могут задавать Алисе вопросы не только в Поиске, но и по открытой веб-странице. Она проанализирует текст на сайте и даст ёмкий ответ со ссылками на конкретные фрагменты.

Эти большие обновления — результат работы сразу нескольких команд. Команда Яндекс Поиска создает LLM технологии в поиске, проектирует интерфейсы, создает инфраструктуру, позволяющую сервису работать бесперебойно 24/7.

Сейчас перед командой стоят новые амбициозные задачи, поэтому она расширяется и ищет:
Разработчика на C++ в YandexGPT;
Тимлида в Финансы.

Если интересно создавать продукт, которым ежедневно пользуются десятки миллионов людей, и развивать ИИ на мировом уровне — ищите вакансии выше.

Реклама. ООО "Яндекс". ИНН 7736207543
Forwarded from Python/ django
🤖 AI, который сам пишет код — умный агент на базе LangGraph

Проект находится в активной разработке и уже умеет автоматизировать весь цикл: от планирования проекта до генерации кода. Всё построено на надёжных multi-agent workflow'ах с использованием LangGraph.


🚀 Что делает агент:

🧠 Понимает задачу и строит план
AI-архитектор анализирует требования и создаёт пошаговый план разработки.

💻 Генерирует и редактирует код
Dev-агент аккуратно применяет изменения в кодовой базе, редактируя конкретные файлы.

🔁 Разделяет роли — надёжнее работает
Отдельные агенты для планирования и реализации — меньше ошибок и больше контроля.

🧬 Понимает структуру проекта
Использует tree-sitter и семантический поиск, чтобы ориентироваться в коде как человек.

📦 Работает по шагам
Разбивает задачи на мелкие изменения — удобно для review и безопасно для CI.

💡 Если интересуешься автоматизацией разработки, AI-помощниками и мультиагентными системами — стоит попробовать уже сейчас.

Github

@pythonl


#AI #AutoCoding #LangGraph #DevTools #MultiAgent #CodeAutomation