Python RU
13.4K subscribers
857 photos
39 videos
36 files
1.11K links
Все для python разработчиков

админ - @haarrp

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
加入频道
Forwarded from Machinelearning
🌟 YOLOE — это усовершенствованная версия алгоритма обнаружения объектов, вдохновлённая классической архитектурой YOLO и разработанная командой THU-MIG.

Архитектура YOLO (You Only Look Once) получила своё название благодаря подходу, при котором нейронная сеть анализирует всё изображение целиком за один проход, чтобы определить присутствие и расположение объектов. Это отличается от других методов, которые сначала выделяют потенциальные области с объектами, а затем отдельно классифицируют их, что требует нескольких обработок одного изображения

YOLOE сохраняет принцип однократного взгляда на изображение для детекции объектов, но вносит архитектурные улучшения, направленные на повышение точности и эффективности модели.

Ключевые отличия от классического YOLO:

- Оптимизированная архитектура: В YOLOE внедрены новые подходы для более эффективной обработки признаков, что позволяет улучшить качество детекции без значительного увеличения вычислительных затрат.
- Повышенная точность: Улучшенные модули и методы, такие как ре-параметризация отдельных блоков, способствуют более точному обнаружению объектов, включая мелкие и сложно различимые элементы.
- Скорость и эффективность: YOLOE сохраняет высокую скорость инференса, делая его пригодным для задач в реальном времени, при этом обеспечивая конкурентоспособное соотношение производительности и точности.

▶️YOLOE требует в 3 раза меньших затрат на обучение по сравнению с YOLO-Worldv2, что делает процесс обучения более экономичным

YOLOE представляет собой современное и улучшенное решение для задач детекции объектов, совмещающее лучшие стороны классического YOLO с новыми архитектурными подходами.

🖥Github
🟡Статья
🟡HF
🟡Colab

#yoloe #opensource #ml #ai #yolo #objectdetection
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Authentik — это система управления удостоверениями (IAM) с открытым исходным кодом, предназначенная для обеспечения аутентификации и авторизации пользователей в различных приложениях!

🌟 Она поддерживает единый вход (SSO), многофакторную аутентификацию (MFA) и интеграцию с популярными протоколами, такими как OAuth2, SAML и LDAP. Authentik используется для защиты веб-приложений и управления доступом на основе ролей.

🔐 Лицензия: CC BY-SA 4.0

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🌐 Maigret — это инструмент OSINT (разведки на основе открытых данных), который позволяет находить профили пользователей в более чем 2000 онлайн-сервисах на основе имени пользователя!

🌟 Он анализирует доступную информацию, такую как социальные сети, форумы и платформы, и создает отчет о найденных профилях.

🔐 Лицензия: MIT

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 В Python оператор break часто используется для раннего завершения цикла, но иногда его применение может привести к менее читаемому или запутанному коду. В этой статье мы рассмотрим альтернативы, которые помогут сделать ваш код чище и понятнее.

Использование конструкции for/else:
Если вам нужно выполнить дополнительное действие, когда цикл завершается без принудительного выхода, можно использовать блок else. В этом случае код внутри else выполнится только если цикл завершился «естественным образом», а не с помощью break.

Флаговое управление циклом:
Вместо использования break можно завести булевую переменную (флаг), которая будет сигнализировать, что условие для выхода выполнено. Это позволяет явно обозначить, когда цикл должен завершиться, делая логику более явной.

Возврат из функции (return):
Если цикл находится внутри функции, можно отказаться от break, просто завершив выполнение функции через return. Такой подход сразу возвращает результат и предотвращает дальнейшее выполнение кода, что зачастую упрощает логику.

Использование исключений:
В некоторых случаях, особенно когда требуется выйти из вложенных циклов, можно определить и выбросить специальное исключение. Этот метод позволяет аккуратно прервать выполнение нескольких уровней циклов, а затем обработать исключение в одном месте.

Каждая из этих альтернатив может оказаться более подходящей в зависимости от контекста задачи. Применение таких методов помогает сделать код более предсказуемым, улучшает его поддержку и повышает читаемость. Попробуйте применить один из этих подходов в своём проекте и оцените, насколько он улучшает структуру вашего кода!

📌 Читать статью
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
👩‍💻 Wowy — это шаблон интернет-магазина, построенный на Django 4.x, который предоставляет полный набор функций для управления!

🌟 Она обеспечивает удобный пользовательский интерфейс и мощную панель администратора. Включает поддержку управления товарами (с множеством изображений), управление категориями, корзину, список желаний, генерацию PDF-счетов и детальную аналитику продаж.

🔐 Лицензия: MIT

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🤖 Modern Robotics Course: Открытый курс по современной робототехнике.

Курс сочетает теорию (математика, физика) и практику (код, симуляторы), помогая разработчикам научиться создавать и программировать роботов.

🌟 Что внутри?
Лекции: От основ робототехники, математики и физики до пространственных преобразований, обратной кинематике и более продвинутым концепциям .
Практика: Примеры кода на Python и C++ для управления роботами.
Симуляторы: Интеграция с стимуляторами Gazebo и ROS ( операционная система для робото) для тестирования алгоритмов.
Задания: Реальные практические задачи (например, управление манипулятором робота).

🌟 Для кого?
Начинающие робототехники: Освоить кинематику, динамику, управление.
Программисты: Интегрировать алгоритмы в ROS, Gazebo, Python/C++.
Инженеры: Возможность Научиться разрабатывать автономные системы и манипуляторы.
Технологические энтузиасты

С курсом можно пройти путь от нуля до создания рабочего прототипа.

С курсом у вас будет возможность проектировать роботов, не имея железа под рукой (через симуляторы).

✔️ Готовые решения: Внутри вы найдете библиотеки для работы с преобразованиями, датчиками, движением.

✔️Карьера в робототехнике: Курс даст возможность получить базовые навыки, востребованные в Bosch, Boston Dynamics, Tesla.

⭐️ Преимущества перед другими открытыми курсами
🟠 Акцент на практике: Минимум абстракций — максимум кода.
🟠Совместимость с ROS: Стандарт для промышленной робототехники.
🟠 Современные алгоритмы: Не только классика, но и нейросетевые подходы.

➡️ Cовет: Для погружения в курс, вам поможет книга Robotics, Vision and Control: Fundamental Algorithms in Python, Peter Corke, вот ее репозиторий с примерами кода.

P.S. Для тех, кто любит формат «сделай сам»: Курс научит вас собирать робота виртуально, а потом переносить решения на реальные устройства. 🤖💡

✔️ Github
✔️ Введение в курс

#course #ai #ml #robots #education #курс #робототехника
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥SQLGlot — это мощный парсер SQL и оптимизатор, написанный полностью на Python. Он поддерживает 24+ диалектов, включая DuckDB, Presto/Trino, Snowflake и BigQuery, позволяя конвертировать запросы между ними с сохранением смысла.

📝 Основные преимушества:
- Гибкость: парсер можно легко кастомизировать под свои нужды
- Надежность: проект имеет более 1000 тестов и активное сообщество
- Проивзодительность: несмотря на медленную скорость языка парсер работает очень быстро.

👾 Github

@pro_python_code
Синтаксис Python освоили, а что дальше? 🐍
Работа с БД, парсинг и идеи для пет‑проектов
 
В новом бесплатном курсе от Selectel собраны обучающие материалы для первых шагов в мире реального программирования. Меньше теории — больше практики. На вдумчивое ознакомление со всеми материалами уйдет около четырех часов.
 
После прохождения курса вы научитесь:
🔹 работать с базами данных и брокерами сообщений,
🔹 создавать приложения с графическим интерфейсом,
🔹 автоматизировать получение данных.
 
Переходите в Академию Selectel, чтобы начать изучение курса прямо сейчас ➡️

Реклама. АО «Селектел», ИНН 7810962785, ERID: 2VtzqwJGQBa
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🖥 "Think Python" - баспланая книга от O'Reilly

Одна из лучших книг для изучения Python.

❤️‍🔥Как вам обложка?

3 издание
2 издание

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Какой основной инструмент работы у аналитика?

Pandas - инструмент, который делает жизнь аналитика проще и приятней, а работу - эффективней.

Научиться работать с Pandas на реальных задачах бизнеса можно на бесплатном курсе от Simulative.

За неделю обучения вы:
🟠Освоите Pandas с нуля до продвинутых функций: сложная агрегация, оконные функции и т.д.
🟠Научитесь решать реальные аналитические задачи: проводить многомерный ABC-анализ, XYZ-анализ, рассчитывать динамику продаж.
🟠Сделаете собственный проект, который сможете добавить в портфолио: реальный кейс автоматизации обработки финансовой отчетности от крупной региональной аптечной сети

🕗 Обучение проходит на платформе школы

😶Начать учиться Pandas
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 YT Channel Downloader — интуитивно понятное приложение с графическим интерфейсом созданное для скачивания медиаконтента с YouTube.

Используя надежность библиотек yt-dlp, Scrapetube и pytube и дополненный современным графическим интерфейсом на PyQt 6, этот инструмент обеспечивает удобную загрузку вашего любимого контента.


🔗 GitHub

#python #github #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM