Python RU
13.4K subscribers
857 photos
39 videos
36 files
1.11K links
Все для python разработчиков

админ - @haarrp

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
加入频道
🖥 Курс: Базовое приложение на FastAPI!

🕖 Продолжительность: 1:41:06

🔗 Ссылка: *клик*

#курс #python #fastapi
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Haskell: t.me/haskell_tg

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy
🐧10 малоизвестных, но мощных команд Linux, которые помогут усилить безопасность вашей системы

📌
Читать
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🖥 ScrapeServ — это API, который принимает URL и возвращает файл с данными веб-сайта и его скриншотами!

🌟 Он разработан для запуска в Docker-контейнере и использует браузерные технологии для обработки JavaScript на страницах. Среди возможностей ScrapeServ — прокрутка страницы с созданием скриншотов различных разделов, автоматическая обработка перенаправлений и корректная работа с ссылками на загрузку файлов. Задачи обрабатываются в очереди с настраиваемым распределением памяти, обеспечивая эффективное использование ресурсов.

🔐 Лицензия: MIT

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Разбор задач с собеседований по статистике для Дата Саентистов

В современных собеседованиях на позицию Data Scientist кандидатов проверяют не только практические навыки программирования, но и глубокое понимание статистических методов.

В данной статье рассмотрены часто встречающиеся задач, которые могут встретиться на интервью. Разберём каждую задачу с теоретической точки зрения, а также продемонстрируем пример кода на Python.

📌 Читать

@pro_python_code
Машинное и глубокое обучение ОНЛАЙН-УЧЕБНИК Виктор Владимирович Китов

Учебник содержит выжимку основных материалов на основе читаемых автором курсов на факультете вычислительной математики и кибернетики (ВМК) в МГУ им. М.В.Ломоносова, а также в магистратуре Т-Банка для студентов МФТИ.

Этот онлайн-учебник посвящен увлекательной, перспективной и бурно развивающейся теме машинного обучения (machine learning) и глубокого обучения (deep learning), позволяющей наделять компьютерные программы возможностью принимать сложные интеллектуальные решения, автоматически настраиваемые по наблюдаемым данным. В первой части учебника (машинное обучение) рассматриваются основные задачи и понятия машинного обучения, методы их решения, оценка качества результатов и способы интерпретации моделей машинного обучения. Во второй части (глубокое обучение) изучаются нейронные сети, способы их эффективной настройки и архитектуры для решения различных задач.

Цель учебника состоит в том, чтобы предоставить образовательные материалы в открытый доступ для широкого круга читателей, как совсем не знакомых с областью, так и имеющих в ней некоторый опыт. Описание даётся как на интуитивном уровне, так и используя математические выкладки, поэтому предполагается знакомство читателя с основами математического анализа, теории вероятностей и математической статистикой. За исключением основ высшей математики, учебник полностью самодостаточный. Предварительного знакомства читателя с машинным обучения не требуется, поскольку в учебнике описывается весь цикл разработки моделей от постановки задачи и подготовки данных до оценки качества прогнозов и интерпретации результатов.

Для обратной связи по сайту, материалам и общим вопросам пишите на [email protected].

С правами использования материала учебника вы можете ознакомиться в разделе лицензия.

Разработка и систематизация материалов поддержана грантом некоммерческого фонда развития науки и образования «Интеллект».

📓 Ссылка на книгу
💼 Создание аудиокниги с Python
This media is not supported in your browser
VIEW IN TELEGRAM
Цикл While без выхода из него в реальной жизни 😅

@pro_python_code
Forwarded from Machinelearning
🌟 EuroBERT: энкодеры нового поколения.

Исследовательская группа под патронажем Centrale Supélec (Университет Париж-Сакле) выпустила в открытый доступ EuroBERT — семейство мультиязычных энкодеров, обученных на 5 трлн. токенов из 15 языков, включая русский.

EuroBERT сочетает инновационную архитектуру с поддержкой контекста до 8192 токенов, что делает это семейство идеальным для анализа документов, поиска информации, классификации, регрессии последовательности, оценки качества, оценки резюме и задач, связанных с программированием, решением математических задачи.

В отличие от предшественников (XLM-RoBERTa и mGTE), EuroBERT объединил GQA, RoPE и среднеквадратичную нормализацию, чтобы достичь беспрецедентной эффективности производительности даже в сложных задачах. Второе немаловажное преимущество EuroBERT - в обучение помимо текстовых данных были включены примеры кода и решения математических задач.

Самая младшая модель EuroBERT с 210 млн. параметров показала рекордные результаты: в тесте MIRACL по многоязычному поиску её точность достигла 95%, а в классификации отзывов (AmazonReviews) — 64,5%. Особенно выделяется умение работать с кодом и математикой — в бенчмарках CodeSearchNet и MathShepherd EuroBERT опережает аналоги на 10–15%.

▶️Состав релиза:

🟢EuroBERT-210М
🟢EuroBERT-610М
🟢EuroBERT-2.1В

⚠️ EuroBERT можно использовать непосредственно с transformers, начиная с версии 4.48.0

⚠️ Для достижения максимальной эффективности, разработчики рекомендуют запускать EuroBERT с Flash Attention 2

▶️ Пример инференса:

from transformers import AutoTokenizer, AutoModelForMaskedLM

model_id = "EuroBERT/EuroBERT-210m"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)

text = "The capital of France is <|mask|>."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)

# To get predictions for the mask:
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: Paris


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Коллекция на HF
🟡Arxiv
🖥GitHub (Скоро)


@ai_machinelearning_big_data

#AI #ML #Encoder #EuroBERT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🖥 python-genai — это официальный SDK на Python от Google, предназначенный для интеграции генеративных моделей Google AI в приложения!

💡 Основные возможности включают генерацию текста, настройку моделей с помощью системных инструкций, параметры генерации (например, температуры, длины вывода), а также встроенные механизмы безопасности. SDK поддерживает удобную работу с параметрами через словари или модели Pydantic. Также предусмотрена интеграция с пользовательскими функциями для обработки результатов или вызова API.

🔐 Лицензия: Apache-2.0

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ pandas-ai — это open-source библиотека, позволяющая интегрировать возможности искусственного интеллекта в работу с DataFrame библиотеки pandas.

Интеграция ИИ с pandas: Проект позволяет задавать вопросы на естественном языке относительно ваших данных в DataFrame и получать интерпретируемые ответы, используя крупные языковые модели (LLM).
Удобство анализа: С помощью pandas-ai вы можете автоматически получать анализ данных, визуализации и статистические выводы без написания сложного кода.
Гибкость и расширяемость: Библиотека легко настраивается и интегрируется с различными моделями и API, что делает её полезной для быстрого прототипирования и разработки аналитических приложений.

Таким образом, pandas-ai интересен разработчикам и аналитикам, которые хотят объединить возможности ИИ с традиционным анализом данных для автоматизации и упрощения рабочих процессов.

Github
🖥 YT Navigator — это приложение на основе искусственного интеллекта, предназначенное для эффективного поиска и взаимодействия с контентом YouTube-каналов.

Оно позволяет пользователям выполнять семантический поиск по видео, получать точные временные метки и извлекать информацию из часов видеоматериалов за считанные секунды.

📌 Основные функции YT Navigator:

Семантический поиск: Возможность находить релевантные сегменты видео с точными временными метками на основе естественных языковых запросов.

Интерактивное общение: Пользователи могут "общаться" с содержимым канала, получая ответы на вопросы, основанные на транскриптах видео.

Экстракция информации: Быстрое извлечение ключевой информации из большого объёма видеоконтента, что экономит время и усилия при анализе материалов.

Преимущества использования YT Navigator:

Экономия времени: Быстрый доступ к конкретной информации без необходимости просмотра длительных видеороликов.

Удобство: Интуитивно понятный интерфейс и мощные функции делают процесс поиска и анализа видеоконтента более эффективным.

YT Navigator особенно полезен для исследователей, аналитиков и всех, кто работает с большими объёмами видеоданных, предоставляя инструменты для быстрого и точного анализа контента.

📌 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 YOLOE — это усовершенствованная версия алгоритма обнаружения объектов, вдохновлённая классической архитектурой YOLO и разработанная командой THU-MIG.

Архитектура YOLO (You Only Look Once) получила своё название благодаря подходу, при котором нейронная сеть анализирует всё изображение целиком за один проход, чтобы определить присутствие и расположение объектов. Это отличается от других методов, которые сначала выделяют потенциальные области с объектами, а затем отдельно классифицируют их, что требует нескольких обработок одного изображения

YOLOE сохраняет принцип однократного взгляда на изображение для детекции объектов, но вносит архитектурные улучшения, направленные на повышение точности и эффективности модели.

Ключевые отличия от классического YOLO:

- Оптимизированная архитектура: В YOLOE внедрены новые подходы для более эффективной обработки признаков, что позволяет улучшить качество детекции без значительного увеличения вычислительных затрат.
- Повышенная точность: Улучшенные модули и методы, такие как ре-параметризация отдельных блоков, способствуют более точному обнаружению объектов, включая мелкие и сложно различимые элементы.
- Скорость и эффективность: YOLOE сохраняет высокую скорость инференса, делая его пригодным для задач в реальном времени, при этом обеспечивая конкурентоспособное соотношение производительности и точности.

▶️YOLOE требует в 3 раза меньших затрат на обучение по сравнению с YOLO-Worldv2, что делает процесс обучения более экономичным

YOLOE представляет собой современное и улучшенное решение для задач детекции объектов, совмещающее лучшие стороны классического YOLO с новыми архитектурными подходами.

🖥Github
🟡Статья
🟡HF
🟡Colab

#yoloe #opensource #ml #ai #yolo #objectdetection
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Authentik — это система управления удостоверениями (IAM) с открытым исходным кодом, предназначенная для обеспечения аутентификации и авторизации пользователей в различных приложениях!

🌟 Она поддерживает единый вход (SSO), многофакторную аутентификацию (MFA) и интеграцию с популярными протоколами, такими как OAuth2, SAML и LDAP. Authentik используется для защиты веб-приложений и управления доступом на основе ролей.

🔐 Лицензия: CC BY-SA 4.0

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM