yt-dlg представляет собой кроссплатформенную программу с графическим интерфейсом для работы с загрузчиком медиа youtube-dl, разработанную на языке Python.
Приложение поддерживает скачивание видео и аудиофайлов с большинства известных видеохостингов. Оно также предоставляет возможность задавать минимальные и максимальные размеры загружаемых файлов, выбирать диапазон дат для загрузки видео, а также возобновлять прерванные загрузки. Кроме того, программа обладает множеством других полезных функций.
Подробнее о проекте можно узнать на GitHub: https://github.com/oleksis/youtube-dl-gui.
Приложение поддерживает скачивание видео и аудиофайлов с большинства известных видеохостингов. Оно также предоставляет возможность задавать минимальные и максимальные размеры загружаемых файлов, выбирать диапазон дат для загрузки видео, а также возобновлять прерванные загрузки. Кроме того, программа обладает множеством других полезных функций.
Подробнее о проекте можно узнать на GitHub: https://github.com/oleksis/youtube-dl-gui.
GitHub
GitHub - oleksis/youtube-dl-gui: A cross platform front-end GUI of the popular youtube-dl written in wxPython.
A cross platform front-end GUI of the popular youtube-dl written in wxPython. - oleksis/youtube-dl-gui
This media is not supported in your browser
VIEW IN TELEGRAM
1. Основы Python
Изучите:
- Переменные и типы данных
- Условные операторы и циклы
- Функции
2. Основные структуры данных
Практика:
- Списки, множества, словари
- Стек, очередь, связанный список
- Алгоритмы сортировки и поиска
3. Погружение в объектно-ориентированное программирование (ООП)
Понять:
- Классы и объекты
- Наследование
- Инкапсуляция и полиморфизм
4. Изучение веб-фреймворков
Начните с:
- Flask (для начинающих)
- Django (для опытных разработчиков)
5. Разработка API с использованием Flask/Django
Ключевые концепции:
- Операции CRUD
- Аутентификация
- Работа с данными JSON
6. Интеграция баз данных с Python
- Базы данных SQL: SQLite, PostgreSQL
- NoSQL базы данных: MongoDB
7. Тестирование кода на Python
Основные инструменты:
- Модульное тестирование (unittest, pytest)
- Отладка (pdb)
8. Продвинутые темы Python
Глубокое погружение:
- Декораторы
- Генераторы
- Менеджеры контекста
9. Развёртывание приложений Python
Методы развёртывания:
- Разворачивание на Heroku
- Контейнеризация с помощью Docker
10. Создание и развёртывание проектов
Реализуйте проекты:
- Веб-приложения (Flask/Django)
- Сервисы API
- Проекты анализа данных
#doc #python #roadmap
@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
"time.sleep()",
так как это заблокирует основной цикл.Вместо этого используйте
`async.sleep()`.
@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Boltz-1 - первая доступная модель с открытым исходным кодом, которая достигает точности AlphaFold3 в прогнозировании 3D-структур белков, РНК, ДНК и небольших молекул. Boltz-1 основана на архитектуре AlphaFold3, но включает ряд модификаций, повышающих точность и общую эффективность модели.
Архитектура состоит из модуля множественного выравнивания последовательностей (MSA), модуля PairFormer и диффузионной модели, работающую на двух уровнях разрешения: тяжелые атомы и токены. Токены представляют собой аминокислоты для белков, основания для РНК и ДНК, а также отдельные тяжелые атомы для других молекул.
Boltz-1 использует диффузионную модель, аналогичную AlphaFold3, но Boltz-1 использует жесткое выравнивание с помощью алгоритма Кабша после каждого шага процедуры вывода, чтобы гарантировать, что интерполированная структура более похожа на очищенную от шума выборку. Это уменьшает дисперсию потерь денойзинга и предотвращает переобучение модели.
Обучение модели проводилось на структурных данных из PDB, выпущенных до 30 сентября 2021 года, с разрешением не менее 9Å. Чтобы ускорить обучение, разработчики Boltz-1 применили алгоритм сопряжения MSA с использованием таксономической информации, унифицированный алгоритм кадрирования и алгоритм определения кармана связывания. Обучение модели заняло 68 тысяч шагов с размером пакета 128, что меньше, чем у AlphaFold3.
Оценка Boltz-1 была выполнена на датасете CASP15 и на наборе PDB, специально созданном разработчиками для тестирования.
Результаты показали, что Boltz-1 сопоставима по точности с Chai-1, закрытой репликацией AlphaFold3. Обе модели демонстрируют схожие показатели среднего LDDT и среднего TM-score.
Boltz-1 продемонстрировала преимущество в предсказании взаимодействия белок-лиганд на наборе данных CASP15.
Прикладная реализация инференса, доступная в репозитории на Github, может принимать на вход форматы:
Подробные инструкции для процесса прогнозирования и дообучения опубликованы в репозитории с кодом.
# Install boltz with PyPI
pip install boltz
# run inference
boltz predict input_path
@ai_machinelearning_big_data
#AI #ML #Diffusion #3D #Biomolecular
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Rio интегрирует компоненты в стиле React прямо в Python. Вы можете выбирать из множества готовых элементов и комбинировать их для создания полноценных приложений. Приложения, разработанные с использованием Rio, могут запускаться как локально, так и в сети.
Установка:
pip install rio-ui
Please open Telegram to view this post
VIEW IN TELEGRAM
@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
Выпущена версия Flask 3.1.0
https://flask.palletsprojects.com/en/stable/changes/#version-3-1-0
@pro_python_code
https://flask.palletsprojects.com/en/stable/changes/#version-3-1-0
@pro_python_code
Полный гайд по обработке ошибок в Python 🐍✍️
Мигель Гринберг, известный автор мега-туториалов по Flask, создал подробный гайд о том, как правильно обрабатывать ошибки в Python. В нем рассматриваются следующие темы:
- Два подхода к обработке ошибок: LBYL («Посмотри перед прыжком») и EAFP («Проще попросить прощения, чем разрешения»);
- Классификация ошибок;
- Способы обработки ошибок.
Ссылки для чтения:
🔗 Оригинал
🔗 Перевод
@pro_python_code
Мигель Гринберг, известный автор мега-туториалов по Flask, создал подробный гайд о том, как правильно обрабатывать ошибки в Python. В нем рассматриваются следующие темы:
- Два подхода к обработке ошибок: LBYL («Посмотри перед прыжком») и EAFP («Проще попросить прощения, чем разрешения»);
- Классификация ошибок;
- Способы обработки ошибок.
Ссылки для чтения:
🔗 Оригинал
🔗 Перевод
@pro_python_code
Forwarded from Machinelearning
Anthropic разработала новый открытый стандарт Model Context Protocol (MCP) для подключения ИИ-ассистентов к системам хранения данных. MCP позволяет моделям ИИ, независимо от разработчика, получать данные из различных источников, включая бизнес-инструменты, репозитории контента и среды разработки приложений. Это позволит моделям генерировать более качественные и релевантные ответы на запросы пользователей.
Anthropic утверждает, что MCP решает проблему разрозненности данных, предоставляя разработчикам протокол для создания двусторонних соединений между источниками данных и ИИ-приложениями. MCP уже интегрирован компаниями Block и Apollo и платформами Replit, Codeium и Sourcegraph.
techcrunch.com
Согласно исследованию Google Workspace и The Harris Poll, 82% представителей Gen Z уже используют инструменты ИИ в своей работе. Практически все опрошенные (98%) ожидают, что ИИ окажет влияние на их отрасль или рабочее место в течение следующих 5 лет. Более 50% пользователей ИИ регулярно делятся своим опытом и знаниями с коллегами, а 75% рекомендуют инструменты генеративного ИИ своим коллегам.
Z-поколение использует ИИ для написания электронных писем, преодоления языковых барьеров и повышения эффективности в коммуникациях. 88% респондентов считают, что ИИ может помочь им начать работу над сложной задачей, а 87% полагают, что ИИ сделает их более уверенными в онлайн-встречах.
googlecloudpresscorner.com
Fugatto — это новая генеративная модель, которая позволяет создавать, изменять и комбинировать любые звуки, музыку и голоса с помощью текстовых промптов и аудиофайлов.
Модель мультиязычна, основана на Transformers и использует 2,5 млрд. параметров. Fugatto обладает уникальной способностью сочетать различные инструкции и интерполировать между ними, предоставляя тонкий контроль над генерируемым звуком. Модель может изменять акценты и эмоции в голосе, создавать новые звуки, которых никогда не было, и даже заставлять музыкальные инструменты издавать нехарактерные для них звуки. Демо видео, техотчет.
blogs.nvidia.com
iRacing объединилась с Microsoft Research для разработки продвинутых моделей ИИ - Large Action Models (LAM). Цель сотрудничества - улучшить ИИ-пилотов, создать системы коучинга на базе ИИ и внедрить другие функции с использованием ИИ.
LAM будут обучаться на основе данных iRacing, чтобы предоставлять гонщикам обратную связь в режиме реального времени, улучшать качество игры и помогать им совершенствовать свои навыки. iRacing и Microsoft Research планируют опубликовать результаты своих исследований, чтобы разработчики могли внедрять технологии в свои продукты. В проекте также участвует бывший гонщик INDYCAR Ориоль Сервиа в качестве эксперта.
iracing.com
DynaSaur - это платформа агентов LLM, разработанная совместно Университетом Мэриленда и Adobe, которая позволяет агентам динамически создавать и компоновать действия в режиме реального времени.
В отличие от традиционных LLM-агентов, которые руководствуются предопределенными наборами действий, DynaSaur генерирует, выполнет и совершенствует новые функции Python, когда существующие функции оказываются недостаточными. Агент ведет растущую библиотеку повторно используемых функций, наращивая способность реагировать на различные сценарии.
В тестах на платформе GAIA DynaSaur превзошел базовые показатели, достигнув средней точности 38,21% с использованием GPT-4. Кода пока нет.
arxiv.org
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Анализ данных (Data analysis)
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
По мере роста объемов данных и сложности вычислений, вычисления на Python и NumPy, основанные на CPU, нуждаются в ускорении для выполнения современных исследований.
cuPyNumeric разработана, чтобы стать заменой библиотеки NumPy, предоставляя сообществу Python распределенные и ускоренные вычисления на платформе NVIDIA. cuPyNumeric позволяет масштабировать вычисления без изменения кода проектов с одного CPU до суперкомпьютеров с несколькими GPU и вычислительными нодами.
Библиотека построена на Legate, поддерживает родной Python и интерфейс NumPy. cuPyNumeric доступен из conda (версия не ниже 24.1) в legate channel. На системах с GPU пакеты, поддерживающие графические ускорители будут выбраны автоматически во время установки.
Пример эффективности cuPyNumeric - обработка 10 ТБ микроизображений многоракурсной микроскопии в виде одного массива NumPy за один день с визуализаций в режиме реального времени.
# Create new conda env
conda create -n myenv -c conda-forge -c legate cupynumeric
# Test via example from repo
$ legate examples/black_scholes.py
Running black scholes on 10K options...
Elapsed Time: 129.017 ms
@ai_machinelearning_big_data
#AI #ML #NumPy #NVIDIA #cuPyNumeric
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy
За последние годы онлайн-мошенничество стало более изощренным, сложным и скрытым. Онлайн мир сделал мошенничество доступным для многих людей. Дипфейки и ИИ еще больше усугубили ситуацию.
Поскольку мир перешел от личного общения к онлайн-взаимодействию, мошенникам редко приходятся встречаться со своими жертвами. Они могут легко сделать все через интернет, используя навыки социальной инженерии.
📌 Статья
Please open Telegram to view this post
VIEW IN TELEGRAM