Искусственный_интеллект_современный_подход,_4_е_изд_3_тома_2021_.7z
194.2 MB
📗 Том 1. Решение проблем: знания и рассуждения
Книга дополнена обширным набором интернет-ресурсов, включая упражнения, программные и исследовательские проекты, реализации алгоритмов, а также дополнительные материалы и ссылки для студентов и преподавателей. Что нового в четвертом издании. В четвертом издании читатель познакомится с новейшими технологиями и концепциями, представленными в более унифицированном виде с новым или расширенным охватом таких тем, как машинное обучение, глубокое обучение, трансферное обучение, многоагентные системы, робототехника, обработка естественного языка, проблема причинности, вероятностное программирование, а также конфиденциальность, беспристрастность и безопасность ИИ.
📘 Том 2. Знания и рассуждения в условиях неопределенности
Предыдущие издания этой книги стали классическими образцами литературы по ИИ и приняты в качестве учебного пособия более чем в 1400 университетах 128 стран мира, где были высоко оценены как убедительный итог обобщения результатов, достигнутых в этой области науки. Книга дополнена обширным набором интернет-ресурсов, включая упражнения, программные проекты и исследовательские проекты, реализации алгоритмов, дополнительные материалы и ссылки для студентов и преподавателей.
📙 Том 3. Обучение, восприятие и действие
Самое полное и актуальное введение в теорию и практику искусственного интеллекта! В четвертом, обновленном, пересмотренном и дополненном издании этой книги область искусственного интеллекта (ИИ) исследуется и анализируется во всей ее обширности и глубине. Здесь представлены все современные достижения и изложены идеи, которые были сформулированы в исследованиях, проводившихся в течение последних пятидесяти лет, а также собраны на протяжении двух тысячелетий в областях знаний, ставших стимулом к развитию ИИ как науки. #ИИ #AI #ML #машинное_обучение #искусственный_интеллект
💡 Physics.Math.Code // @physics_lib
Книга дополнена обширным набором интернет-ресурсов, включая упражнения, программные и исследовательские проекты, реализации алгоритмов, а также дополнительные материалы и ссылки для студентов и преподавателей. Что нового в четвертом издании. В четвертом издании читатель познакомится с новейшими технологиями и концепциями, представленными в более унифицированном виде с новым или расширенным охватом таких тем, как машинное обучение, глубокое обучение, трансферное обучение, многоагентные системы, робототехника, обработка естественного языка, проблема причинности, вероятностное программирование, а также конфиденциальность, беспристрастность и безопасность ИИ.
📘 Том 2. Знания и рассуждения в условиях неопределенности
Предыдущие издания этой книги стали классическими образцами литературы по ИИ и приняты в качестве учебного пособия более чем в 1400 университетах 128 стран мира, где были высоко оценены как убедительный итог обобщения результатов, достигнутых в этой области науки. Книга дополнена обширным набором интернет-ресурсов, включая упражнения, программные проекты и исследовательские проекты, реализации алгоритмов, дополнительные материалы и ссылки для студентов и преподавателей.
📙 Том 3. Обучение, восприятие и действие
Самое полное и актуальное введение в теорию и практику искусственного интеллекта! В четвертом, обновленном, пересмотренном и дополненном издании этой книги область искусственного интеллекта (ИИ) исследуется и анализируется во всей ее обширности и глубине. Здесь представлены все современные достижения и изложены идеи, которые были сформулированы в исследованиях, проводившихся в течение последних пятидесяти лет, а также собраны на протяжении двух тысячелетий в областях знаний, ставших стимулом к развитию ИИ как науки. #ИИ #AI #ML #машинное_обучение #искусственный_интеллект
💡 Physics.Math.Code // @physics_lib
👍87🔥16❤10❤🔥10🤯2
📚 5 книг по теме: машинная графика, обработка изображений, контурный анализ
💾 Скачать книги
Машинная графика (МГ) – это совокупность технических, математических и программных средств и приемов, позволяющих осуществить ввод и вывод из ЭВМ графической информации без ручного преобразования информации в числовую или графическую форму. Машинная графика используется во многих научных и инженерных дисциплинах, в бизнесе и кинематографии, рекламном и издательском деле, проектировании.
Обработка изображений — любая форма обработки информации, для которой входные данные представлены изображением, например, фотографиями или видеокадрами.
Контурный анализ — это область науки, посвященная обработке изображения, содержащая в себе набор алгоритмов и методов по нахождению границ (контуров) объектов и работе с границами объектов на изображении.
#математика #искусственный_интеллект #машинное_обучение #обработка_изображений #контурный_анализ #линейная_алгебра #ML #AI
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Машинная графика (МГ) – это совокупность технических, математических и программных средств и приемов, позволяющих осуществить ввод и вывод из ЭВМ графической информации без ручного преобразования информации в числовую или графическую форму. Машинная графика используется во многих научных и инженерных дисциплинах, в бизнесе и кинематографии, рекламном и издательском деле, проектировании.
Обработка изображений — любая форма обработки информации, для которой входные данные представлены изображением, например, фотографиями или видеокадрами.
Контурный анализ — это область науки, посвященная обработке изображения, содержащая в себе набор алгоритмов и методов по нахождению границ (контуров) объектов и работе с границами объектов на изображении.
#математика #искусственный_интеллект #машинное_обучение #обработка_изображений #контурный_анализ #линейная_алгебра #ML #AI
💡 Physics.Math.Code // @physics_lib
🔥33👍27❤🔥4❤1✍1🤯1😍1😭1
📙 Обработка изображений и цифровая фильтрация [1979] Хуанг Т.
📘 Быстрые алгоритмы в цифровой обработке изображений Преобразования и медианные фильтры [1984] Хуанг Т.С.
💾 Скачать книги
Обработка изображений — любая форма обработки информации, для которой входные данные представлены изображением, например, фотографиями или видеокадрами. #математика #искусственный_интеллект #машинное_обучение #обработка_изображений #контурный_анализ #линейная_алгебра #ML #AI
Для тех, кто захочет поддержать на кофе и печеньки ☕️:
ВТБ:
Сбер:
ЮMoney:
💡 Physics.Math.Code // @physics_lib
📘 Быстрые алгоритмы в цифровой обработке изображений Преобразования и медианные фильтры [1984] Хуанг Т.С.
💾 Скачать книги
Обработка изображений — любая форма обработки информации, для которой входные данные представлены изображением, например, фотографиями или видеокадрами. #математика #искусственный_интеллект #машинное_обучение #обработка_изображений #контурный_анализ #линейная_алгебра #ML #AI
Для тех, кто захочет поддержать на кофе и печеньки ☕️:
ВТБ:
+79616572047
(СБП) Сбер:
+79026552832
(СБП) ЮMoney:
410012169999048
💡 Physics.Math.Code // @physics_lib
👍38🔥10❤🔥4❤3🤯2😎2🥰1
📙 Кластерный анализ [1988] Мандель Игорь Давидович
💾 Скачать книгу
Основная идея кластерного анализа (clustering, cluster analysis) заключается в том, чтобы разбить объекты на группы или кластеры таким образом, чтобы внутри группы эти наблюдения были более похожи друг на друга, чем на объекты другого кластера. При этом мы заранее не знаем на какие кластеры необходимо разбить наши данные. Это связано с тем, что мы обучаем модель на неразмеченных данных (unlabeled data), то есть без целевой переменной, компонента y. Именно поэтому в данном случае говорят по машинное обучение без учителя (Unsupervised Learning).
Кластерный анализ может применяться для сегментации потребителей, обнаружения аномальных наблюдений (например, при выявлении мошенничества) и в целом для структурирования данных, о содержании которых мало что известно заранее. #математика #искусственный_интеллект #машинное_обучение #обработка_изображений #контурный_анализ #линейная_алгебра #ML #AI
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Основная идея кластерного анализа (clustering, cluster analysis) заключается в том, чтобы разбить объекты на группы или кластеры таким образом, чтобы внутри группы эти наблюдения были более похожи друг на друга, чем на объекты другого кластера. При этом мы заранее не знаем на какие кластеры необходимо разбить наши данные. Это связано с тем, что мы обучаем модель на неразмеченных данных (unlabeled data), то есть без целевой переменной, компонента y. Именно поэтому в данном случае говорят по машинное обучение без учителя (Unsupervised Learning).
Кластерный анализ может применяться для сегментации потребителей, обнаружения аномальных наблюдений (например, при выявлении мошенничества) и в целом для структурирования данных, о содержании которых мало что известно заранее. #математика #искусственный_интеллект #машинное_обучение #обработка_изображений #контурный_анализ #линейная_алгебра #ML #AI
💡 Physics.Math.Code // @physics_lib
👍58❤18🔥6❤🔥1😍1
📱 Revisiting BPR: A Replicability Study of a Common Recommender System Baseline
💾 Скачать исследование – ссылка
Ученые из лаборатории искусственного интеллекта T-Bank AI Research представили новый алгоритм, который с помощью ИИ увеличивает точность онлайн-рекомендаций до 50% в некоторых случаях. Разработчики взяли за основу и улучшили популярный алгоритм для предсказания предпочтений пользователей Bayesian Personalized Ranking, который считается одним из мировых стандартов в рекомендательных системах. Поиск наиболее эффективного варианта алгоритма занял более 200 000 GPU-часов и 15 000 экспериментов на внутренних данных Т-Банка с различными комбинациями параметров модели. Отмечается также, что новая разработка оказалась на 10% точнее алгоритма Mult-VAE, которую ранее опубликовали разработчиками из Netflix.
Новый алгоритм позволит компаниям улучшать свои метрики, в том числе конверсию в покупку, средний чек и выручку. Покупатели при этом смогут быстрее находить нужные товары на маркетплейсах, а зрители — получать более персонализированные рекомендации фильмов и сериалов.
Открытие ученых было признано мировым научным сообществом и представлено на главной международной конференции по рекомендательным системам ACM RecSys.
#ИИ #AI #искусственный_интеллект #science #алгоритмы
💡 Physics.Math.Code // @physics_lib
💾 Скачать исследование – ссылка
Ученые из лаборатории искусственного интеллекта T-Bank AI Research представили новый алгоритм, который с помощью ИИ увеличивает точность онлайн-рекомендаций до 50% в некоторых случаях. Разработчики взяли за основу и улучшили популярный алгоритм для предсказания предпочтений пользователей Bayesian Personalized Ranking, который считается одним из мировых стандартов в рекомендательных системах. Поиск наиболее эффективного варианта алгоритма занял более 200 000 GPU-часов и 15 000 экспериментов на внутренних данных Т-Банка с различными комбинациями параметров модели. Отмечается также, что новая разработка оказалась на 10% точнее алгоритма Mult-VAE, которую ранее опубликовали разработчиками из Netflix.
Новый алгоритм позволит компаниям улучшать свои метрики, в том числе конверсию в покупку, средний чек и выручку. Покупатели при этом смогут быстрее находить нужные товары на маркетплейсах, а зрители — получать более персонализированные рекомендации фильмов и сериалов.
Открытие ученых было признано мировым научным сообществом и представлено на главной международной конференции по рекомендательным системам ACM RecSys.
#ИИ #AI #искусственный_интеллект #science #алгоритмы
💡 Physics.Math.Code // @physics_lib
👍47🔥9❤5🗿4❤🔥3⚡3😘1
⛵️ Самый точный в мире метод распознавания неизвестных объектов на фото с помощью ИИ разработали ученые из T-Bank AI Research
💾 Скачать исследование
Ранее в области компьютерного зрения (CV) для распознавания объектов на фото применялись методы машинного обучения. Однако они сталкивались с проблемой однородности ансамблей, иначе говоря, они были слишком похожи друг на друга, что приводило к снижению качества и разнообразия их оценок.
Ученые из T-Bank AI Research разработали метод Saliency-Diversified Deep Ensembles, решающий эту проблему. В нем используются карты внимания, фокусирующиеся на разных аспектах данных. “Глубокие ансамбли”, которые объединяют несколько нейронных сетей для решения задачи применялись и ранее для компьютерного зрения, но при применении SDDE каждая модель обращается к разным аспектам данных, например отдельно захватывается фон изображения. Компиляция таких разных данных и привела к повышению точности анализа объектов на изображениях. Так ученым удалось уменьшить схожесть моделей, что способствует более надежной и диверсифицированной идентификации объектов.
Использование метода SDDE позволяет модели на 20% меньше ошибаться при обработке и анализе фото. При этом она учитывает не только наборы данных, знакомые ей из обучения, но и неизвестную ранее информацию. В перспективе метод SDDE будут использовать в сферах, требующих высокой точности анализа, например, в медицинской диагностике, где важно различать неопознанные элементы и графические артефакты, а также в сфере беспилотных транспортных средств.
Для проверки метода и оценки его эффективности ученые провели испытания на популярных базах данных: CIFAR10, CIFAR100 и ImageNet-1K. Результаты метода SDDE превзошли результаты других схожих алгоритмов, например, Negative Correlation Learning и Adaptive Diversity Promoting.
На Международной конференции по обработке изображений (IEEE ICIP) в Абу-Даби открытие ученых было признано мировым научным сообществом.
#ИИ #AI #искусственный_интеллект #science #алгоритмы #math #математика
💡 Physics.Math.Code // @physics_lib
💾 Скачать исследование
Ранее в области компьютерного зрения (CV) для распознавания объектов на фото применялись методы машинного обучения. Однако они сталкивались с проблемой однородности ансамблей, иначе говоря, они были слишком похожи друг на друга, что приводило к снижению качества и разнообразия их оценок.
Ученые из T-Bank AI Research разработали метод Saliency-Diversified Deep Ensembles, решающий эту проблему. В нем используются карты внимания, фокусирующиеся на разных аспектах данных. “Глубокие ансамбли”, которые объединяют несколько нейронных сетей для решения задачи применялись и ранее для компьютерного зрения, но при применении SDDE каждая модель обращается к разным аспектам данных, например отдельно захватывается фон изображения. Компиляция таких разных данных и привела к повышению точности анализа объектов на изображениях. Так ученым удалось уменьшить схожесть моделей, что способствует более надежной и диверсифицированной идентификации объектов.
Использование метода SDDE позволяет модели на 20% меньше ошибаться при обработке и анализе фото. При этом она учитывает не только наборы данных, знакомые ей из обучения, но и неизвестную ранее информацию. В перспективе метод SDDE будут использовать в сферах, требующих высокой точности анализа, например, в медицинской диагностике, где важно различать неопознанные элементы и графические артефакты, а также в сфере беспилотных транспортных средств.
Для проверки метода и оценки его эффективности ученые провели испытания на популярных базах данных: CIFAR10, CIFAR100 и ImageNet-1K. Результаты метода SDDE превзошли результаты других схожих алгоритмов, например, Negative Correlation Learning и Adaptive Diversity Promoting.
На Международной конференции по обработке изображений (IEEE ICIP) в Абу-Даби открытие ученых было признано мировым научным сообществом.
#ИИ #AI #искусственный_интеллект #science #алгоритмы #math #математика
💡 Physics.Math.Code // @physics_lib
👍96🔥26❤15❤🔥1🆒1
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев
💾 Скачать книгу
Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.
Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.
Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.
Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.
Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
👍51❤🔥12🔥7❤5🤯4🫡1
Обработка_нечеткой_информации_в_системах_принятия_решений_1989_Борисов.djvu
13.3 MB
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев
Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.
Обработка нечёткой информации применяется в различных областях, например:
▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.
Обработка нечёткой информации применяется в различных областях, например:
▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
👍56🔥15❤6🤝3👻2