Physics.Math.Code
140K subscribers
5.15K photos
1.92K videos
5.78K files
4.32K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
加入频道
Data_Engineering_with_Python_Work_with_massive_datasets_to_design.pdf
10.5 MB
📙 Data Engineering with Python: Work with massive datasets to design data models and automate data pipelines using Python [2020] Paul Crickard

Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects.
Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examplesDesign data models and learn how to extract, transform, and load (ETL) data using PythonSchedule, automate, and monitor complex data pipelines in production.

Data engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python.

The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You'll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You'll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you'll build architectures on which you'll learn how to deploy data pipelines.

By the end of this Python book, you'll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.

This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python.
#Python #анализ_данных #data_science #big_data
👍406❤‍🔥3🔥321
👨🏻‍💻 По просьбам камрадов запускаем складчину на новую книгу по алгоритмам 📖

Тематика книги: Доступное и прекрасно иллюстрированное введение в вероятностные дисковые структуры данных и алгоритмы . Нужно собрать 1600 руб. Как только соберем, то приобретем книгу и выложим.

Новая книга: 📘 Алгоритмы и структуры для массивных наборов данных [2023] Меджедович Дж., Тахирович Э.
(в архив будет добавлена также EN-версия книги)

💡 Как всегда, книга будет предоставлена Вам только для ознакомления и личного пользования без распространения.

Для тех, кто захочет пожертвовать на покупку этой книги:
Карта ВТБ: 4272290768112195 ( СБП: +79616572047 )
Карта Сбербанк: 2202200638175206 ( СБП: +79026552832 )
ЮMoney (яндекс.деньги): 410012169999048

#складчина #алгоритмы #big_data #программирование #python #R #структуры_данных
👍7316😍31😢1
📘 Алгоритмы и структуры для массивных наборов данных [2023] Меджедович Дж., Тахирович Э.
📗 Algorithms and
Data Structures for Massive Datasets [2022] Dzejla Medjedovic, Emin Tahirovic

⚠️ Книги предоставляется вам для ознакомления и не для распространения

💳 Купить книгу

💾 Ознакомиться с книгами RU+EN

Джейла Меджедович защитила докторскую диссертацию в лаборатории прикладных алгоритмов Университета Стоуни Брук, Нью-Йорк. Эмин Тахирович защитил докторскую диссертацию по биостатистике в Пенсильванском университете. Иллюстратор Инес Дедович защитила докторскую диссертацию в Институте визуализации и компьютерного зрения при Университете Аахена, Германия. #складчина #алгоритмы #big_data #программирование #python #R #структуры_данных

💡 Physics.Math.Code
👍70🔥177😍2🗿2❤‍🔥1🌚1🤝1