physħ — физика и космос
8.7K subscribers
108 photos
4 videos
30 files
434 links
Здесь много физики и космоса, и немного личных впечатлений автора.

Вопросы и предложения отправляйте мне в личку @korzhimanov

Мой сайт-визитка: http://korzhimanov.ru
Мой научно-популярный блог: http://physh.ru
加入频道
Кто выживет на Титанике? — первая задача, которую решают все начинающие в Data Science. Цель задачи — построить модель, которая сможет предсказать, остался произвольный пассажир в живых или нет.

23 мая пройдет бесплатный онлайн-митап для всех, кто задумывается о профессии в Data Science, на котором вы сможете решить эту задачу.

Под руководством эксперта Дмитрия Крылова вы попробуете себя в роли дата сайентиста, получите ответы на популярные вопросы о работе с данными и сможете выиграть сертификат на обучение.

❗️Регистрируйтесь бесплатноhttps://clc.am/3TtXRg
May 22, 2021
Push me
And then just touch me…

Сегодняшний пост #науказбс написал я сам, так как мой приятель и коллега Джордж Хит (один из авторов работы) не говорит по-русски. Я расскажу про новый метод, который изобрели в нашей лабе: локализационную атомно-силовую микроскопию (Localization AFM). Звучит сложно, но на самом деле это очень крутая штука.

Наша лаба занимается атомно-силовой микроскопией (АСМ): мы разрабатываем для нее новые примочки и применяем это в изучении биологии.

Коротко, что такое АСМ:
Представьте, что вы с завязанным глазами пытаетесь нащупать дорогу при помощи трости. То, как четко вы “видите” дорогу, зависит от нескольких факторов: острота трости, чувствительность руки и твердость поверхности.

Так и устроена АСМ: острая иголка прикреплена к чувствительной руке (cantilever). Вы водите этой иголкой по поверхности образца и по отклонениям руки вычисляете 3D-изображение этой поверхности. Так достаточно острые иголки (с несколькими атомами на конце) позволяют “видеть” поверхность белков и ДНК, а иногда даже атомов.

Теперь про Localization AFM:
Попробуйте с закрытыми глазами нащупать очертания стакана пальцем или карандашом: это не так сложно. А теперь повторите то же самое теннисным мячиком: скорее всего в стакан он не влезет, и вы не сможете нащупать дно. Единственная часть стакана, которую вы можете достоверно нащупать любым предметом — это его края, потому что они находятся наверху стакана.

В АСМ вы не знаете точную форму иглы, поэтому достоверными можно считать только верхние точки на 3D-изображении. Чем ниже точка, тем меньше вероятность того, что она определена правильно. Другими словами высота каждой точки на АСМ-изображении пропорциональна вероятности того, что эта точка “правдива” (это не совсем так, есть нюансы).

Теперь представьте, что вы сканируете АСМ-иглой один и тот же образец много раз подряд и получаете много похожих 3D-изображений. Эти изображения немного разные из-за внутреннего шума микроскопа и теплового движения атомов образца. Дальше используя нехитрые вычисления можно составить карту наиболее правдивых точек на 3D-изображении и определить их правдивость. В этом и заключается метод Localization AFM.

Данным методом Джордж смог получить 3D-изображение поверхности белка аквапорин Z с разрешением 0,4нм — даже можно разглядеть отдельно торчащие аминокислоты! Помню, когда Джордж показал идею проекта у нас в лабе, я подумал: “Это же бомба! Ну почему это придумал не я…”

Эта работа — пример того, как можно добиться революционных результатов на микроскопе, который изобрели еще 2000х, используя простой вычислительный метод из другого микроскопа, который изобрели еще в 90е. Точно это одна из самых резонансных публикаций в биофизике в последние годы. И это только начало: метод все больше будет развиваться и применяться.

Результаты опубликованы в Nature (бесплатно можно прочитать тут). Визуальное объяснение работы на видео внизу поста.
Пост Джорджа про данную работу (на английском): тык.

ЗЫ. Раньше я рассказывал, как похожим на АСМ методом смогли записать память на один атом: тык.
ЗЫЫ. Про свой проект я тоже как-нибудь расскажу, но его сначала доделать надо:)

Всем добра,
Тг

#науказбс
June 21, 2021
July 18, 2021
July 22, 2021
July 26, 2021
Forwarded from EPC Academy
Сверхпроводники изменят мир. Новости науки.
#NEWS

Во-первых, что такое сверхпроводник?
Сверхпроводимость была открыта в 1911 году Хейке Камерлингом Оннесом, голландским физиком и Нобелевским лауреатом.

Во время одного из экспериментов по поведению газов при сверхнизких температурах Хейке и его команда заметили, что электрическое сопротивление ртути полностью исчезло при трех градусах выше абсолютного нуля — это почти -460° по Фаренгейту и чуть более -270° по Цельсию.

Огромное количество энергии, которую производит и передает мир, тратится впустую из-за электрического сопротивления. Одно недавнее исследование показало, что количество отходов составляет 949 миллионов метрических тонн эквивалентов углекислого газа каждый год.

Из всей энергии, вырабатываемой через электрическую сеть за один год, такие страны, как Германия и Сингапур, теряют 2%, Соединенные Штаты-6%, Индия-19%, а такие страны, как Ирак, Гаити и Республика Конго, теряют более 50%. Это означает, что для восполнения потерь энергии вырабатываемая электроэнергия составляет от 102% до 150% от того, что мы фактически можем использовать в качестве энергии. Остальное теряется в пути.

В одном городе Германии недавно установили сверхпроводящий кабель, соединяющий два трансформатора, который охлаждался жидким азотом. В дополнение к почти полному устранению потерь в линии, кабель был способен передавать в пять раз больше энергии, чем обычный кабель.

Основное ограничение на использование сверхпроводников - это температура, при которой возникает эффект сверхпроводимости.

Возможен ли сверхпроводник при комнатной температуре?

Лаборатория Университета Рочестер в Нью-Йорке установила новый рекорд в достижении долгожданной цели.

В двух исследованиях, опубликованных прошлой осенью и этой весной, лаборатория Ранга Диаса, доцента кафедры машиностроения, физики и астрономии, сообщила о новом рекорде температуры, при которой материалы обладают сверхпроводимостью

В отчете, опубликованном в качестве обложки статьи в журнале Nature (и в рамках подкаста Nature), Диас и его исследовательская группа объединили водород с углеродом и серой, чтобы фотохимически синтезировать простой гидрид углеродистой серы органического происхождения в ячейке алмазной наковальни, исследовательском устройстве, используемом для исследования небольших количеств материалов под чрезвычайно высоким давлением.

Результатом стал новый рекорд: материал, обладающий сверхпроводимостью при температуре около 14,44 градусов по Цельсию и давлении около 2,6 млн. атм.

Во втором исследовании, опубликованном в журнале Physical Review Letters, лаборатория описала отделение атомов водорода от иттрия с помощью тонкой пленки палладия. Полученный супергидрид иттрия обладает сверхпроводимостью при температуре минус 11,1 по Цельсию и давлении около 1,73 млн. атм.

Подробнее читайте здесь.
July 26, 2021
October 4, 2021
October 4, 2021
October 5, 2021
October 5, 2021
Forwarded from astronomy (Igor Tirsky)
November 2, 2021
December 21, 2021
Сегодня, наконец, после почти 30-летней разработки и бесконечных переносов сроков в космос отправился телескоп Джеймса Уэбба. Этот запуск, если всё пройдёт, как запланировано, станет крупнейшим астрономическим событием за последние десятки лет — сравнимым по значимости с запуском телескопа Хаббла.

Собственно наследником Хаббла чаще всего Джеймса Уэбба и называют, хотя это не просто более крупная версия старого телескопа. Размер зеркала Уэбба действительно в несколько раз больше, чем у Хаббла — 6,5 метров в диаметре вместо 2,4, — а значит выше и разрешающая способность, и чувствительность. Чтобы запустить такое зеркало в космос пришлось даже разработать специальную систему из 18 зеркал-сегментов, сложенных на старте и разворачиваемых в космосе. Именно эти сегменты придают Уэббу узнаваемую форму пчелиных сот.

Уэбб, однако, отличается от Хаббла воспринимаемым оптическим диапазоном. Если Хаббл в основном работает в видимом диапазоне, Уэбб нацелен на инфракрасное излучение. Он лишь немного затрагивает жёлто-красную область видимого спектра. Такое решение связано с тем, что в первую очередь Уэбб будет нацелен на изучение далёких космических объектов, в том числе тех, которые существовали на заре Вселенной. Из-за расширения Вселенной их излучение испытывает сильный сдвиг в инфракрасную область.

Ещё одна особенность Уэбба — наличие спектрометров для более тонкого анализа спектра излучения. Это, по задумке, в частности, позволит ему изучать состав атмосфер экзопланет.

Но всё же главными задачами нового телескопа станут поиск первых галактик и, возможно, других светящихся объектов ранней Вселенной, изучение эволюции галактик, наблюдение процессов формирования звёзд и начального этапа возникновения планетных систем вокруг них.

Ждать первых результатов, правда, придётся довольно долго. Только через месяц он достигнет точки своего пребывания в космосе. Затем в течение полугода он будет готовиться к работе: остывать до рабочей температуры, калибровать зеркала и инструменты и т. п. И только затем начнёт проводить первые наблюдения и присылать фоточки для обоев на наших столах. Но после стольких лет можно и подождать.

Подробнее про Уэбба и его возможности можно почитать у Александра Войтюка на N+1 https://nplus1.ru/material/2021/12/24/jwst-faq
December 25, 2021