physħ — физика и космос
8.7K subscribers
108 photos
4 videos
30 files
434 links
Здесь много физики и космоса, и немного личных впечатлений автора.

Вопросы и предложения отправляйте мне в личку @korzhimanov

Мой сайт-визитка: http://korzhimanov.ru
Мой научно-популярный блог: http://physh.ru
加入频道
Forwarded from На поверхность
Лонг стори шорт:
• Вань из старой школы физиков, которые застали Великую культурную революцию. По окончании университета он уехал из Пекина и три года пережидал репрессии в предгорьях Тибета. Выращивал с женой редьку.
• Он выпустился, когда в Китае ещё не знали, что такое плазма. Нынешний уровень развития науки — заслуга Дэна Сяопина, который открыл двери из Китая в мир: китайские учёные стали впитывать как губки западный опыт, открылось куча решений проблемам Китая.
• Программы по работе с плазмой стартовали в 1973 году. Доктор Вань катался в Германию, Францию, Союз, Штаты.
• Первый токамак Китай достал со свалки Курчатовского института: на работу по ядерному синтезу не было денег и Вань вывез советскую установку Т-7 в 1990 году. Китайцы провели обратную разработку сломанного токамака.
• Теперь правительство КНР с пониманием даёт деньги на программу EAST: на проблему нехватки энергии партия смотрит без иллюзий.
Forwarded from Мел
Не только Леонардо Ди Каприо не везло до недавнего времени с «Оскаром». Арнольд Зоммерфельд — самый невезучий учёный. Немецкого физика номинировали на Нобелевку 81 раз (!), но ни разу не удостоили чести стать её лауреатом. Несмотря на свое невезение, ему удалось воспитать больше всего нобелевских лауреатов и поработать с Альбертом Эйнштейном и Нильсом Бором. Почитайте его историю

http://mel.fm/2016/12/14/nobel_no?ext=tel
Тут мне в фейсбуке подсказывают, что в статью про Зоммерфельда вкралась небольшая ошибка. Номинировался он всё-таки 84 раза. По крайней мере, если верить официальному сайту нобелевского комитета.
Написал ещё и автору текста про Зоммерфельда Анне Рыжковой. Она говорит, что цифру «81» взяла из наиболее авторитетной биографии Зоммерфельда, написанной Микаэлем Эккертом. Так что вопрос не так однозначен. В любом случае, сути это, конечно, не меняет.
Есть такой замечательный физик XX века Ричард Фейнман. Вы наверняка слышали про Фейнмановские лекции — уникальный курс, прочитанный им в 1960-х годах в Калифорнийском технологическом институте, а затем выпущенный в виде серии книг.

Так вот, он вообще был пострясающим лектором, а в 1964 году согласился прочитать семь научно-популярных лекций в рамках так называемых Мессенджеровских чтений в Корнелльском университете. Этот курс получил название «Характер физического закона» и впоследствии также был выпущен в виде книги.

Сейчас есть возможность насладиться этими легендарными лекциями на английском языке, а недавно за их перевод и озвучку взялась команда переводчиков Vert Dider. У них уже готовы три лекции, которые можно прослушать здесь https://goo.gl/yBrvH5

Сейчас переводчики собирают деньги на перевод следующих лекций. Их можно поддержать по ссылке https://goo.gl/KwPuyu
Французские физики решили показать невообразимую красоту невидимого меня радиоактивного излучения урана-238.

Для этого они поместили кусочек урана в камеру Вильсона. Принцип действия камеры использует явление конденсации перенасыщенного пара: при появлении в среде перенасыщенного пара каких-либо центров конденсации (в частности ионов, сопровождающих след быстрой заряженной частицы) на них образуются мелкие капли жидкости. Эти капли достигают значительных размеров и могут быть сфотографированы.

В данном случае при опускании поршня пары спирта охлаждаются и становятся перенасыщенными. Когда заряженная частица проходит сквозь эти пары, она выбивает из молекул электроны, образуя ионы. Это приводит к тому, что перенасыщенные пары спирта конденсируются на ионах, которые остаются после движущейся заряженной частицы. Путь частицы внутри камеры состоит из тысяч капель спирта, которые мы видим в виде белых «хвостов». На видео большие белые следы оставляют после себя альфа-частицы, а более мелкие отдалённые – электроны.

https://vk.com/fiz_nev
В нашей группе Вконтакте https://vk.com/the_physics недавно неплохо зашла статья о термояде, переведённая специально для нас замечательной Юлей Шутовой https://vk.com/perevod_v_ekb. И хотя текст мне кажется весьма поверхностным, но тем не менее рискну поделиться им и с вами.

https://goo.gl/txCezL

Кстати, если у вас есть аккаунт VK, не стесняйтесь подписываться на нашу группу 😉
А вот это реально крутая новость: в CERN получили первый оптический спектр антиводорода.

Дело в том, что хотя антиматерию умеют получать уже давно — позитроны впервые были обнаружены ещё в 1932 году, — но вот заставить её объединиться в атомы долгое время по хорошему не удавалось. Просто для примера: в 2002 году считалось огромным достижением создать на доли секунды «комочек» из 1000 атомов антиводорода (это как атом водорода, только вместо электрона там летает позитрон, а в центре находится не протон, а антипротон).

Так вот, уже более 20 лет над этой проблемой работают в CERN. В 2010 году им удалось создать антиводород и сохранять его целым в течение 0,17 секунд (после чего атомы покидали ловушку и быстренько аннигилировали), а через год — уже на 1000 секунд. С такими временами уже можно переходить к изучению свойств таких атомов, что учёные и сделали.

Почему это важно? Потому что есть гипотеза, что материя и антиматерия ведут себя немного по-разному. Если такое расхождение удастся установить, то это будет крупнейшее открытие. Ну а подробности лучше почитать или у N+1 https://goo.gl/WZuD5O или в собственно научной статье, опубликованной, кстати, в Nature https://goo.gl/zOTuWS
Вчера меня порекламировали на канале @LogicPlease. Думаю, стоит сделать ответный реверанс, тем более, что канал, действительно, интересный. Посвящён он, как несложно видеть из названия, логическому мышлению, а вернее когнитивным искажениям человеческого мозга и способам борьбы с ними.

Эта тема, кстати, важна и для научных исследований. Именно возможностью когнитивных искажений объясняется применение, например, слепого метода, когда учёный, обрабатывающий данные, не знает, к какому конкретно эксперименту или диапазону параметров эксперимента они относятся. Это защищает от непреднамеренного «подгона» результата под ожидаемый эффект.

История физики знает несколько примеров того, как несовершенство нашего мозга и психики приводили к получению ложных результатов. Одним из самых известных, пожалуй, является случай с открытием N-лучей, сделанным французским учёным Рене Блондло.

Вкратце суть заключается в том, что Блондло видел некое тусклое свечение, которое по его гипотезе вызывалось новым типом лучей. Проблема была в том, что другим учёным не удавалось повторить его результаты в своих лабраториях. В итоге оказалось, что это свечение Блондло лишь мерещилось. Разоблачить заблуждение учёного удалось приехавшему в его лабораторию физику-экспериментатору Роберту Вуду. Он незаметно от Блондло вынул из экспериментальной установки одну важную деталь, но Блондло (вернее, его ассистент, что в данном случае несущественно) продолжал «видеть» свечение. Когда же Вуд вновь подошёл к установке и поставил деталь на место, но сообщив, что наборот только что вынул её, ассистент как по мановению волшебной палочки перестал «видеть» свечение.

Чуть подробнее об этой истории можно почитать здесь https://goo.gl/XhfHrx А я же призываю вас всегда задумываться, не занимаетесь ли вы неосознанным самообманом. Скептически стоит относится даже к тому, что вы «видите», не говоря уж о том, что «помните», что видели — (само)внушённые воспоминания далеко не редкость.
Знакомьтесь, это Елена Априле, профессор Колумбийского университета, возглавляющая группу, создавшую самый чувствительный детектор частиц тёмной материи, известных как вимпы.
Сегодня я принёс вам статью про алмазы. Ну вы знаете, это такое скучное название бриллиантов. Так вот, алмазы, оказывается, интересны не только девушкам и ювелирам. Учёные тоже нашли у них полезные для себя свойства. Что это за свойства, и где они востребованы, рассказывает физик Евгений Глушков https://goo.gl/3kGcBQ
Ну вы уже видели это, да ведь?
Это самый маленький снеговик в мире. Его высота менее 3 микрон, а изготовлен он из трёх 0,9-микронных шариков, сделанных из диоксида кремния и уложенных с использованием электронно-лучевой литографии. Глаза и рот вырезаны сфокусированным ионным пучком. Изготовители снеговичка: http://nanofab.uwo.ca/
Вы наверняка слышали про квантовые компьютеры и про то, какие плюшки они нам сулят, когда и если будут созданы. Одной из проблем на пути воплощения квантового компьютера в жизнь является проблема сохранения особой квантовой связи между элементарными кубиками таких компьютеров — кубитами. Эта связь называется квантовой когерентностью, а процесс её разрушения — декогеренцией. В общем, недавно вышла работа, в которой утверждается, что удалось-таки найти способ сохранять квантовую когерентность сколь угодно долго. Вопрос только в стоимости и технологичности предлагаемого метода. Больше подробностей в моём блоге: https://goo.gl/ngfPSy
Так рождаются планеты
Наша Солнечная система образовалась из гигантского первичного газо-пылевого облака. Почти вся его масса ушла на формирование Солнца, а в оставшемся после этого вращающемся диске вследствие слипания и конденсации вещества появились на своих орбитах те самые планеты, которые мы видим на небе сегодня и на одной из которых живем.

Похожие процессы астрономы могут теперь наблюдать в окрестностях других звезд. На фото выше – вращающийся диск из вещества, оставшегося после образования молодой звезды HD 163296. Мощь телескопа ALMA (Atacama Large Millimeter/submillimeter Array), установленного в Чили, позволила астрономам выявить в диске специфические детали, например, концентрические кольца вокруг центральной звезды. На ALMA удалось даже с высоким разрешением измерить параметры газа и пыли, из которых состоит диск. По этим данным можно проследить историю образования молодой планетной системы.

Три промежутка между кольцами в диске, вероятно, отражают снижение плотности пыли. Оказалось также, что в среднем и внешнем промежутках понижено и количество газа. Это свидетельство присутствия там новообразованных планет, каждой с массой как у Сатурна, которые, обращаясь вокруг звезды по своим орбитам, расчищают себе путь.

Источник: ESO, ALMA (ESO/NAOJ/NRAO); A. Isella; B. Saxton (NRAO/AUI/NSF) http://www.eso.org/public/russia/images/potw1652a/