Winning approaches for solving Advanced Driver Assistance System challenge on Kaggle:
https://blog.getnexar.com/how-a-22-year-old-from-shanghai-won-a-global-deep-learning-challenge-76f2299446a1
#deeplearning #kaggle #cv
https://blog.getnexar.com/how-a-22-year-old-from-shanghai-won-a-global-deep-learning-challenge-76f2299446a1
#deeplearning #kaggle #cv
Medium
How a 22 year old from Shanghai won a global deep learning challenge
We challenged the worlds top deep learning researchers with a vehicle detection problem and the results were surprising
The State of Data Science & Machine Learning 2017 by Kaggle.
Very informative article about age, job titles, most popular languages and everything related to DS / ML.
Not to mention that source data is included.
https://www.kaggle.com/surveys/2017
#kaggle #statistics
Very informative article about age, job titles, most popular languages and everything related to DS / ML.
Not to mention that source data is included.
https://www.kaggle.com/surveys/2017
#kaggle #statistics
Google's open source candy for all ML community:
Source-to-Source Debuggable Derivatives
https://opensource.googleblog.com/2017/11/tangent-source-to-source-debuggable.html?m=1
#opensource #nn #python #google
Source-to-Source Debuggable Derivatives
https://opensource.googleblog.com/2017/11/tangent-source-to-source-debuggable.html?m=1
#opensource #nn #python #google
Google Open Source Blog
Tangent: Source-to-Source Debuggable Derivatives
Imitation learning for structured prediction in natural language processing
https://sheffieldnlp.github.io/ImitationLearningTutorialEACL2017
#nlp #tutorial
https://sheffieldnlp.github.io/ImitationLearningTutorialEACL2017
#nlp #tutorial
On 1st of November Geoff Hinton — one of the top NN researches has published two papers introducing new approach for #CV problems: Capsule Networks.
These architecture allows to recognize a face on the picture by detecting eyes, nose, mouth, regardless of the position / scaling / rotating the elements.
In other words, these approach allows neural network to be invariant to transformation of object.
First of papers: https://arxiv.org/abs/1710.09829
Second paper: https://openreview.net/forum?id=HJWLfGWRb¬eId=HJWLfGWRb
Article on Wired: https://www.wired.com/story/googles-ai-wizard-unveils-a-new-twist-on-neural-networks/
Explanation on hackernoon: https://hackernoon.com/what-is-a-capsnet-or-capsule-network-2bfbe48769cc
Another post with explanation: https://kndrck.co/posts/capsule_networks_explained/
These architecture allows to recognize a face on the picture by detecting eyes, nose, mouth, regardless of the position / scaling / rotating the elements.
In other words, these approach allows neural network to be invariant to transformation of object.
First of papers: https://arxiv.org/abs/1710.09829
Second paper: https://openreview.net/forum?id=HJWLfGWRb¬eId=HJWLfGWRb
Article on Wired: https://www.wired.com/story/googles-ai-wizard-unveils-a-new-twist-on-neural-networks/
Explanation on hackernoon: https://hackernoon.com/what-is-a-capsnet-or-capsule-network-2bfbe48769cc
Another post with explanation: https://kndrck.co/posts/capsule_networks_explained/
WIRED
Google’s AI Wizard Unveils a New Twist on Neural Networks
Google's Geoff Hinton helped catalyze the current AI boom and says he knows how to make machines smarter at understanding the world.
And another posts on #CapsNet and how they work.
Capsule Networks Are Shaking up AI — Here’s How to Use Them: https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952
Understanding Hinton’s Capsule Networks. Part I: Intuition:
https://medium.com/@pechyonkin/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
Understanding Hinton’s Capsule Networks. Part II: How Capsules Work:
https://medium.com/@pechyonkin/understanding-hintons-capsule-networks-part-ii-how-capsules-work-153b6ade9f66
Capsule Networks Are Shaking up AI — Here’s How to Use Them: https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952
Understanding Hinton’s Capsule Networks. Part I: Intuition:
https://medium.com/@pechyonkin/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
Understanding Hinton’s Capsule Networks. Part II: How Capsules Work:
https://medium.com/@pechyonkin/understanding-hintons-capsule-networks-part-ii-how-capsules-work-153b6ade9f66
Hackernoon
Capsule Networks Are Shaking up AI — Here’s How to Use Them | HackerNoon
If you follow AI you might have heard about the advent of the potentially revolutionary Capsule Networks. I will show you how you can start using them today.
An article about #BigBrother. How Facebook is able to track users interests based on 3 likes.
Enhancing Transparency and Control When Drawing Data-Driven Inferences About Individuals
http://online.liebertpub.com/doi/full/10.1089/big.2017.0074
Enhancing Transparency and Control When Drawing Data-Driven Inferences About Individuals
http://online.liebertpub.com/doi/full/10.1089/big.2017.0074
Realtime object detection by Google.
https://research.googleblog.com/2017/11/automl-for-large-scale-image.html
YouTube demo: https://www.youtube.com/watch?time_continue=70&v=ERglPgx8wFg
#deeplearning #google #caption #detection
https://research.googleblog.com/2017/11/automl-for-large-scale-image.html
YouTube demo: https://www.youtube.com/watch?time_continue=70&v=ERglPgx8wFg
#deeplearning #google #caption #detection
Google AI Blog
AutoML for large scale image classification and object detection
Posted by Barret Zoph, Vijay Vasudevan, Jonathon Shlens and Quoc Le, Research Scientists, Google Brain Team A few months ago, we introduce...
StarGAN — a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model.
GitHub: https://github.com/yunjey/StarGAN
Arxiv: https://arxiv.org/abs/1711.09020
#deeplearning #gan #cv
GitHub: https://github.com/yunjey/StarGAN
Arxiv: https://arxiv.org/abs/1711.09020
#deeplearning #gan #cv
GitHub
GitHub - yunjey/stargan: StarGAN - Official PyTorch Implementation (CVPR 2018)
StarGAN - Official PyTorch Implementation (CVPR 2018) - yunjey/stargan
👍1
An article about the impossibility of intelligence explosion. There will be no singularity or significant breakthrough and humanity will die off becuase of sun explosion.
https://medium.com/@francois.chollet/the-impossibility-of-intelligence-explosion-5be4a9eda6ec
https://medium.com/@francois.chollet/the-impossibility-of-intelligence-explosion-5be4a9eda6ec
Medium
The implausibility of intelligence explosion
In 1965, I. J. Good described for the first time the notion of “intelligence explosion”, as it relates to artificial intelligence (AI):
#DeepLearning predicts when patients die with Average Precision 0.69 (that’s high).
Andrew Ng announced new project in his twitter: ML to help prioritize palliative (end-of-life) care. Model uses an 18-layer Deep Neural Network that inputs the EHR data of a patient, and outputs the probability of death in the next 3-12 months.
The trained model achieves an AUROC score of 0.93 and an Average Precision score of 0.69 on cross validation.
Site: https://stanfordmlgroup.github.io/projects/improving-palliative-care/
Arxiv: https://arxiv.org/abs/1711.06402
#project #DSinthewild #casestudy
Andrew Ng announced new project in his twitter: ML to help prioritize palliative (end-of-life) care. Model uses an 18-layer Deep Neural Network that inputs the EHR data of a patient, and outputs the probability of death in the next 3-12 months.
The trained model achieves an AUROC score of 0.93 and an Average Precision score of 0.69 on cross validation.
Site: https://stanfordmlgroup.github.io/projects/improving-palliative-care/
Arxiv: https://arxiv.org/abs/1711.06402
#project #DSinthewild #casestudy
stanfordmlgroup.github.io
Improving Palliative Care with Deep Learning
Improving Palliative Care with Deep Learning.