On Artificial Intelligence
108 subscribers
27 photos
36 files
466 links
If you want to know more about Science, specially Artificial Intelligence, this is the right place for you
Admin Contact:
@Oriea
加入频道
PyTorch Internals

Summary
: This article is for those of you who have used PyTorch, and thought to yourself, "It would be great if I could contribute to PyTorch," but were scared by PyTorch's behemoth of a C++ codebase. I'm not going to lie: the PyTorch codebase can be a bit overwhelming at times. The purpose of this talk is to put a map in your hands: to tell you about the basic conceptual structure of a "tensor library that supports automatic differentiation", and give you some tools and tricks for finding your way around the codebase. I'm going to assume that you've written some PyTorch before, but haven't necessarily delved deeper into how a machine learning library is written.

http://blog.ezyang.com/2019/05/pytorch-internals/
#pytorch #deep_learning
Neural Architecture Search without Training

Abstract
: The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be extremely slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be remedied if we could infer a network's trained accuracy from its initial state. In this work, we examine how the linear maps induced by data points correlate for untrained network architectures in the NAS-Bench-201 search space, and motivate how this can be used to give a measure of modelling flexibility which is highly indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU.

Explanatory Video: https://www.youtube.com/watch?v=a6v92P0EbJc

GitHub Repo: https://github.com/BayesWatch/nas-without-training

Paper: https://arxiv.org/abs/2006.04647
#deep_learning #neural_architecture_search
An Introduction to Deep Reinforcement Learning

Abstract: Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has been able to solve a wide range of complex decisionmaking tasks that were previously out of reach for a machine. Thus, deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. We assume the reader is familiar with basic machine learning concepts.

Paper: https://arxiv.org/pdf/1811.12560.pdf
#reinforcement_learning
#deep_learning
Backward Feature Correction: How Deep Learning Performs Deep Learning

Summary
: How does a 110-layer ResNet learn a high-complexity classifier using relatively few training examples and short training time? We present a theory towards explaining this in terms of hierarchical learning. We refer hierarchical learning as the learner learns to represent a complicated target function by decomposing it into a sequence of simpler functions to reduce sample and time complexity. This paper formally analyzes how multi-layer neural networks can perform such hierarchical learning efficiently and automatically by applying SGD. On the conceptual side, we present, to the best of our knowledge, the FIRST theory result indicating how deep neural networks can be sample and time efficient on certain hierarchical learning tasks, when NO KNOWN non-hierarchical algorithms (such as kernel method, linear regression over feature mappings, tensor decomposition, sparse coding, and their simple combinations) are efficient. We establish a principle called "backward feature correction", where training higher layers in the network can improve the features of lower level ones. We believe this is the key to understand the deep learning process in multi-layer neural networks.

Paper: https://arxiv.org/pdf/2001.04413.pdf
#theory #deep_learning
New Deep Learning Course by Yann LeCun & Alfredo Canziani (Recommended)

Course Intro: This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition.

Additional Info: This course is available in 11 languages such as Persian, and I personally translated some of the materials of this course to Persian :).

https://atcold.github.io/pytorch-Deep-Learning/
#deep_learning #course