AlphaGo - The Movie | Full Documentary
Summary: with more board configurations than there are atoms in the universe, the ancient Chinese game of Go has long been considered a grand challenge for artificial intelligence. On March 9, 2016, the worlds of Go and artificial intelligence collided in South Korea for an extraordinary best-of-five-game competition, coined The DeepMind Challenge Match. Hundreds of millions of people around the world watched as a legendary Go master took on an unproven AI challenger for the first time in history.
https://www.youtube.com/watch?v=WXuK6gekU1Y
#artificial_intelligence #reinforcement_learning #deep_learning
Summary: with more board configurations than there are atoms in the universe, the ancient Chinese game of Go has long been considered a grand challenge for artificial intelligence. On March 9, 2016, the worlds of Go and artificial intelligence collided in South Korea for an extraordinary best-of-five-game competition, coined The DeepMind Challenge Match. Hundreds of millions of people around the world watched as a legendary Go master took on an unproven AI challenger for the first time in history.
https://www.youtube.com/watch?v=WXuK6gekU1Y
#artificial_intelligence #reinforcement_learning #deep_learning
YouTube
AlphaGo - The Movie | Full award-winning documentary
With more board configurations than there are atoms in the universe, the ancient Chinese game of Go has long been considered a grand challenge for artificial intelligence.
On March 9, 2016, the worlds of Go and artificial intelligence collided in South…
On March 9, 2016, the worlds of Go and artificial intelligence collided in South…
Universal Intelligence: A Definition of Machine Intelligence
Abstract: A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: We take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this equation formally captures the concept of machine intelligence in the broadest reasonable sense. We then show how this formal definition is related to the theory of universal optimal learning agents. Finally, we survey the many other tests and definitions of intelligence that have been proposed for machines.
https://arxiv.org/pdf/0712.3329.pdf
#artificial_intelligence
Abstract: A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: We take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this equation formally captures the concept of machine intelligence in the broadest reasonable sense. We then show how this formal definition is related to the theory of universal optimal learning agents. Finally, we survey the many other tests and definitions of intelligence that have been proposed for machines.
https://arxiv.org/pdf/0712.3329.pdf
#artificial_intelligence
An Approximation of the Universal Intelligence Measure
Abstract: The Universal Intelligence Measure is a recently proposed formal definition of intelligence. It is mathematically specified, extremely general, and captures the essence of many informal definitions of intelligence. It is based on Hutter’s Universal Artificial Intelligence theory, an extension of Ray Solomonoff’s pioneering work on universal induction. Since the Universal Intelligence Measure is only asymptotically computable, building a practical intelligence test from it is not straightforward. This paper studies the practical issues involved in developing a real-world UIM-based performance metric. Based on our investigation, we develop a prototype implementation which we use to evaluate a number of different artificial agents.
https://arxiv.org/pdf/1109.5951v2.pdf
#artificial_intelligence
Abstract: The Universal Intelligence Measure is a recently proposed formal definition of intelligence. It is mathematically specified, extremely general, and captures the essence of many informal definitions of intelligence. It is based on Hutter’s Universal Artificial Intelligence theory, an extension of Ray Solomonoff’s pioneering work on universal induction. Since the Universal Intelligence Measure is only asymptotically computable, building a practical intelligence test from it is not straightforward. This paper studies the practical issues involved in developing a real-world UIM-based performance metric. Based on our investigation, we develop a prototype implementation which we use to evaluate a number of different artificial agents.
https://arxiv.org/pdf/1109.5951v2.pdf
#artificial_intelligence
Ilya Sutskever: Deep Learning
Brief Biography: Ilya Sutskever is the co-founder of OpenAI, is one of the most cited computer scientist in history with over 165,000 citations, and to me, is one of the most brilliant and insightful minds ever in the field of deep learning. There are very few people in this world who I would rather talk to and brainstorm with about deep learning, intelligence, and life than Ilya, on and off the mic.
https://www.youtube.com/watch?v=13CZPWmke6A
#deep_learning #artificial_intelligence #reinforcement_learning
Brief Biography: Ilya Sutskever is the co-founder of OpenAI, is one of the most cited computer scientist in history with over 165,000 citations, and to me, is one of the most brilliant and insightful minds ever in the field of deep learning. There are very few people in this world who I would rather talk to and brainstorm with about deep learning, intelligence, and life than Ilya, on and off the mic.
https://www.youtube.com/watch?v=13CZPWmke6A
#deep_learning #artificial_intelligence #reinforcement_learning
YouTube
Ilya Sutskever: Deep Learning | Lex Fridman Podcast #94
Ilya Sutskever is the co-founder of OpenAI, is one of the most cited computer scientist in history with over 165,000 citations, and to me, is one of the most brilliant and insightful minds ever in the field of deep learning. There are very few people in this…