Neural Networks | Нейронные сети
11.8K subscribers
763 photos
169 videos
170 files
9.42K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
加入频道
Linear Regression with TF Keras

https://www.youtube.com/watch?v=oGuCxVyEhiA

🎥 Linear Regression with TF Keras
👁 1 раз 937 сек.
In this video we learn how to perform linear regression with Keras in TensorFlow.

Keras is TensorFlow's high level API for building deep learning models.

Email: [email protected]
Website: https://www.poincaregroup.com
LinkedIn: https://www.linkedin.com/in/carlos-lara-1055a16b/
🎥 Week 4 CS294-158 Deep Unsupervised Learning (2/20/19)
👁 1 раз 8989 сек.
UC Berkeley CS294-158 Deep Unsupervised Learning (Spring 2019)
Instructors: Pieter Abbeel, Xi (Peter) Chen, Jonathan Ho, Aravind Srinivas
https://sites.google.com/view/berkeley-cs294-158-sp19/home
Week 4 Lecture Contents:
- Latent Variable Models (ctd)
- Bits-Back Coding
​MIT 6.050J Information and Entropy, Spring

🔗 MIT 6.050J Information and Entropy, Spring 2008 - YouTube
Instructors: Paul Penfield, Seth Lloyd This course explores the ultimate limits to communication and computation, with an emphasis on the physical nature of ...


🎥 Unit 1: Bits and Codes, Lecture 2 | MIT 6.050J Information and Entropy, Spring 2008
👁 2 раз 6200 сек.
* Note: Due to technical difficulties, not all the lectures for this course are available.
Unit 1: Bits and Codes, Lecture 2
Instructors: Paul Penfield, Seth Lloyd
See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu


🎥 Unit 2: Compression, Lecture 1 | MIT 6.050J Information and Entropy, Spring 2008
👁 1 раз 4769 сек.
Unit 2: Compression, Lecture 1
Instructors: Paul Penfield, Seth Lloyd

See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu


🎥 Unit 3: Noise and Errors, Lecture 2 | MIT 6.050J Information and Entropy, Spring 2008
👁 1 раз 7009 сек.
Unit 3: Noise and Errors, Lecture 2

Instructors: Paul Penfield, Seth Lloyd

See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu


🎥 Unit 4: Probability, Lecture 1 | MIT 6.050J Information and Entropy, Spring 2008
👁 1 раз 6730 сек.
Unit 4: Probability, Lecture 1
Instructors: Paul Penfield, Seth Lloyd

See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu


🎥 Unit 4: Probability, Lecture 2 | MIT 6.050J Information and Entropy, Spring 2008
👁 1 раз 6605 сек.
Unit 4: Probability, Lecture 2
Instructors: Paul Penfield, Seth Lloyd

See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu


🎥 Unit 5: Communications, Lecture 1 | MIT 6.050J Information and Entropy, Spring 2008
👁 1 раз 6577 сек.
Unit 5: Communications, Lecture 1
Instructors: Paul Penfield, Seth Lloyd

See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu


🎥 Unit 5: Communications, Lecture 2 | MIT 6.050J Information and Entropy, Spring 2008
👁 1 раз 6459 сек.
Unit 5: Communications, Lecture 2
Instructors: Paul Penfield, Seth Lloyd

See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu


🎥 Unit 6: Processes, Lecture 1 | MIT 6.050J Information and Entropy, Spring 2008
👁 1 раз 6419 сек.
Unit 6: Processes, Lecture 1
Instructors: Paul Penfield, Seth Lloyd

See the complete course at: http://ocw.mit.edu/6-050js08

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
​Data Science Code Refactoring Example

Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
When learning to code for data science we don’t usually consider the idea of modifying our code to reap a particular benefit in terms of performance. We code to modify our data, produce a visualization, and to construct our ML models. But if your code is going to be used for a dashboard or app, we have to consider if our code is optimal. In this code example, we will make a small modification to an ecdf function for speed.
https://towardsdatascience.com/data-science-code-refactoring-example-14c3ec858e0c

🔗 Data Science Code Refactoring Example
When learning to code for data science we don’t usually consider the idea of modifying our code to reap a particular benefit in terms of…
🎥 Practical Deep Learning - Part 1
👁 1 раз 15180 сек.
In this first part of Practical deep learning course you will learn about most cutting edge deep learning technology. Along the way you will be exposed to :
- Image classification using transfer learning
- How to set hyper-parameter , learning rate
- Practical deep learning application
- Image collection
- - Parallel downloading
- - Creating a validation set, and
- - Data cleaning, using the model to help us find data problems.
- Image segmentation
- Fine tuning
- Natural language processing
- Tabular
- Co
Unsupervised Learning
https://www.youtube.com/watch?v=8dqdDEyzkFA

🎥 Unsupervised Learning
👁 1 раз 647 сек.
Unsupervised learning is the most exciting subfield of machine learning! Finding structure in unstructured data automatically sounds like a dream come true, no need to have a label! In this video, I'll demonstrate 2 types of unsupervised learning techniques; k means clustering and principal component analysis. We'll use these techniques on neural data from a patient suffering from seizures to see if we can locate the part of their brain in need of surgery to save their life. You'll laugh, you'll cry, but mo
🎥 Machine Learning: основы и опыт применения.
👁 1 раз 2244 сек.
Machine Learning, основы и опыт применения
IT-Trends Conference 2019, Херсон

Основные тезисы:
- Что объединяет Machine Learning, уточек и beauty-industry
- Теоретические основы Machine Learning - подходы и методы
- Какие задачи можно решать с помощью Machine Learning

Спикер: Павел Кнорр, Team Lead и Architect, Logicify.
Более восьми лет работы в IT сфере. Начинал, как full stack-разработчик, последние четыре года отвечал за создание основой архитектуры, поиск и реализацию технических решений. На нескольк
Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 4

Наш телеграм канал - https://tele.click/ai_machinelearning_big_data

https://www.youtube.com/watch?v=yLYHDSv-288

🎥 Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 4
👁 1 раз 4935 сек.
Professor Christopher Manning
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science
Director, Stanford Artificial Intelligence Laboratory (SAIL)

To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs224n/index.html#schedule

To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html

To view all online courses and programs offered by Stanford, v
🎥 Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 2
👁 1 раз 4844 сек.
Professor Christopher Manning
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science
Director, Stanford Artificial Intelligence Laboratory (SAIL)

To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs224n/index.html#schedule

To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html

To view all online courses and programs offered by Stanford, v