23 апреля в 11:00 пройдет онлайн-конференция «Нас слышат, видят, реагируют: куда движутся технологии?» Технологических конкурсов Up Great.
Конференция посвящена возможностям взаимного обучения человека и компьютера, а также потенциалу технологий распознавания естественного языка и «пониманию» искусственным интеллектом смысла текста.
А еще на конференции вы узнаете подробности о новом техконкурсе Up Great ПРО//ЧТЕНИЕ, участники которого должны будут разработать ИИ, способный находить фактические, логические и смысловые ошибки в текстах. Подать заявку на конкурс можно здесь: https://bit.ly/2YUc3mD
Темы для обсуждения:
🔷 Где, как и зачем нужно развивать технологии коммуникации человека и машины? Как раскрыть и освоить новые области внедрения технологий искусственного интеллекта в сфере распознавания?
🔷 Как устроены лучшие решения мировых игроков? Есть ли у России конкурентное преимущество на международных рынках.
🔷 Какие подходы могут привести к следующем прорыву в обработке естественных языков: «пониманию» смысла и логики в тексте?
Спикеры:
— Михаил Бурцев, заведующий лабораторией нейронных систем и глубокого обучения, МФТИ
— Андрей Устюжанин, руководитель совместных проектов Яндекса и CERN
— Иван Ямщиков, PhD, научный сотрудник Института Макса Планка (Лейпциг, Германия), ИИ-евангелист компании ABBYY, сооснователь Creaited Labs
— Константин Воронцов, доктор физико-математических наук. заведующий лабораторией машинного интеллекта МФТИ
— Константин Кайсин, операционный директор технологических конкурсов Up Great
— Юрий Молодых, директор по развитию технологических конкурсов Up Great
Участие бесплатное. Регистрация по ссылке: https://bit.ly/2Rvstz9
Присоединяйтесь!
#Технологические_конкурсы #Up_Great #НТИ #ИИ #прочтение #machinelearning #nlp
Конференция посвящена возможностям взаимного обучения человека и компьютера, а также потенциалу технологий распознавания естественного языка и «пониманию» искусственным интеллектом смысла текста.
А еще на конференции вы узнаете подробности о новом техконкурсе Up Great ПРО//ЧТЕНИЕ, участники которого должны будут разработать ИИ, способный находить фактические, логические и смысловые ошибки в текстах. Подать заявку на конкурс можно здесь: https://bit.ly/2YUc3mD
Темы для обсуждения:
🔷 Где, как и зачем нужно развивать технологии коммуникации человека и машины? Как раскрыть и освоить новые области внедрения технологий искусственного интеллекта в сфере распознавания?
🔷 Как устроены лучшие решения мировых игроков? Есть ли у России конкурентное преимущество на международных рынках.
🔷 Какие подходы могут привести к следующем прорыву в обработке естественных языков: «пониманию» смысла и логики в тексте?
Спикеры:
— Михаил Бурцев, заведующий лабораторией нейронных систем и глубокого обучения, МФТИ
— Андрей Устюжанин, руководитель совместных проектов Яндекса и CERN
— Иван Ямщиков, PhD, научный сотрудник Института Макса Планка (Лейпциг, Германия), ИИ-евангелист компании ABBYY, сооснователь Creaited Labs
— Константин Воронцов, доктор физико-математических наук. заведующий лабораторией машинного интеллекта МФТИ
— Константин Кайсин, операционный директор технологических конкурсов Up Great
— Юрий Молодых, директор по развитию технологических конкурсов Up Great
Участие бесплатное. Регистрация по ссылке: https://bit.ly/2Rvstz9
Присоединяйтесь!
#Технологические_конкурсы #Up_Great #НТИ #ИИ #прочтение #machinelearning #nlp
📃 PORORO
PORORO
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
PORORO
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
VK
Data Science / Machine Learning / AI / Big Data
PORORO
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
Data Science / Machine Learning / AI / Big Data (VK)
CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review
Hendrycks et al.: https://arxiv.org/abs/2103.06268
#ArtificialIntelligence #NLP #Dataset #Legal
CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review
Hendrycks et al.: https://arxiv.org/abs/2103.06268
#ArtificialIntelligence #NLP #Dataset #Legal
Neurohive (VK)
TextFlint – это мультиязычная, многозадачная платформа для анализа устойчивости NLP-моделей. В открытом доступе для английского и китайского языков, другие языки разрабатываются.
#Development #Arxiv #NLP #Opensource
TextFlint – это мультиязычная, многозадачная платформа для анализа устойчивости NLP-моделей. В открытом доступе для английского и китайского языков, другие языки разрабатываются.
#Development #Arxiv #NLP #Opensource
Data Science / Machine Learning / AI / Big Data (VK)
The NLP Cookbook: Modern Recipes for Transformer based Deep Learning Architectures
Sushant Singh, Ausif Mahmood: https://arxiv.org/abs/2104.10640
#NLP #Transformer #DeepLearning
The NLP Cookbook: Modern Recipes for Transformer based Deep Learning Architectures
Sushant Singh, Ausif Mahmood: https://arxiv.org/abs/2104.10640
#NLP #Transformer #DeepLearning
Forwarded from Machinelearning
WordLlama — это быстрый и легкий набор инструментов для обработки естественного языка для задач нечеткой дедупликации, оценки сходства и ранжирования слов.
Он оптимизирован для CPU и способен создавать эффективные представления текстовых лексем, используя компоненты из больших языковых моделей, например LLama3.
Ключевые особенности WordLlama:
Эксперименты на наборе данных MTEB показывают, что WordLlama превосходит GloVe 300d по всем показателям, несмотря на значительно меньший размер (16 МБ против >2 ГБ).
WordLlama демонстрирует высокую производительность в задачах кластеризации, реранжирования, классификации текстов и семантического поиска.
В будущем разработчики планируют добавить функции для семантического разделения текста, а также примеры блокнотов и конвейеры RAG.
@ai_machinelearning_big_data
#AI #ML #Toolkit #NLP #WordLlama
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Этот открытый учебник считается де-факто стандартом и одним из самых авторитетных и всеобъемлющих ресурсов для изучения областей обработки естественного языка (NLP), вычислительной лингвистики и обработки речи.
Книга разделена на три части, включающие 24 основные главы и 8 приложений.
Темы охватывают широкий спектр, включая:
Для каждой главы доступны слайды в форматах PPTX и PDF, что делает ресурс полезным для преподавателей.
Для всех, кто заинтересован в изучении NLP это фантастически полезный ресурс.
@ai_machinelearning_big_data
#freebook #opensource #nlp
Please open Telegram to view this post
VIEW IN TELEGRAM