Нужна помощь!!!! Необходим датасет для нейросети, получающей на вход картинку четко поставленного размера. Кто может скинуть ссылочку??? Или направить где это можно найти? Спасибо
Data scientist: The sexiest job of the 22nd century
Ask these 3 questions to make sure an employer is ready for you
🔗 Data scientist: The sexiest job of the 22nd century
Ask these 3 questions during a job interview to make sure your employer is ready to make data scientists effective
Ask these 3 questions to make sure an employer is ready for you
🔗 Data scientist: The sexiest job of the 22nd century
Ask these 3 questions during a job interview to make sure your employer is ready to make data scientists effective
Towards Data Science
Data scientist: The sexiest job of the 22nd century
Ask these 3 questions during a job interview to make sure your employer is ready to make data scientists effective
The Neural Aesthetic
Notes and around 30 hours of video lectures, by Gene Kogan: http://ml4a.github.io/classes/itp-F18/
#art #artificialintelligence #deeplearning #generativeadversarialnetworks
🔗 ITP-NYU - Fall 2018
Notes and around 30 hours of video lectures, by Gene Kogan: http://ml4a.github.io/classes/itp-F18/
#art #artificialintelligence #deeplearning #generativeadversarialnetworks
🔗 ITP-NYU - Fall 2018
🎥 Deep Learning with Python, TensorFlow, and Keras tutorial
👁 2 раз ⏳ 1234 сек.
👁 2 раз ⏳ 1234 сек.
An updated deep learning introduction using Python, TensorFlow, and Keras.
Text-tutorial and notes: https://pythonprogramming.net/introduction-deep-learning-python-tensorflow-keras/
TensorFlow Docs: https://www.tensorflow.org/api_docs/python/
Keras Docs: https://keras.io/layers/about-keras-layers/
Discord: https://discord.gg/sentdex
Vk
Deep Learning with Python, TensorFlow, and Keras tutorial
An updated deep learning introduction using Python, TensorFlow, and Keras.
Text-tutorial and notes: https://pythonprogramming.net/introduction-deep-learning-python-tensorflow-keras/
TensorFlow Docs: https://www.tensorflow.org/api_docs/python/
Keras Docs:…
Text-tutorial and notes: https://pythonprogramming.net/introduction-deep-learning-python-tensorflow-keras/
TensorFlow Docs: https://www.tensorflow.org/api_docs/python/
Keras Docs:…
The path to being the best data analyst: Help, Build, then Do.
https://towardsdatascience.com/the-path-to-being-the-best-data-analyst-help-build-then-do-43ed6882d4d3?source=collection_home---4------3---------------------
🔗 The path to being the best data analyst: Help, Build, then Do.
The core competency of a data analyst is “Speed to Insight”.
https://towardsdatascience.com/the-path-to-being-the-best-data-analyst-help-build-then-do-43ed6882d4d3?source=collection_home---4------3---------------------
🔗 The path to being the best data analyst: Help, Build, then Do.
The core competency of a data analyst is “Speed to Insight”.
Towards Data Science
The path to being the best data analyst: Help, Build, then Do.
The core competency of a data analyst is “Speed to Insight”.
🎥 Cramer's rule, explained geometrically | Essence of linear algebra, chapter 12
👁 1 раз ⏳ 732 сек.
👁 1 раз ⏳ 732 сек.
This rule seems random to many students, but it has a beautiful reason for being true.
Full series: http://3b1b.co/eola
Home page: https://www.3blue1brown.com/
Special thanks to these supporters: http://3b1b.co/cramer-thanks
----
If you want to contribute translated subtitles or to help review those that have already been made by others and need approval, you can click the gear icon in the video and go to subtitles/cc, then "add subtitles/cc". I really appreciate those who do this, as it helps make the l
Vk
Cramer's rule, explained geometrically | Essence of linear algebra, chapter 12
This rule seems random to many students, but it has a beautiful reason for being true.
Full series: http://3b1b.co/eola
Home page: https://www.3blue1brown.com/
Special thanks to these supporters: http://3b1b.co/cramer-thanks
----
If you want to contribute…
Full series: http://3b1b.co/eola
Home page: https://www.3blue1brown.com/
Special thanks to these supporters: http://3b1b.co/cramer-thanks
----
If you want to contribute…
Bayesian Modeling of Pro Overwatch Matches with PyMC3
https://towardsdatascience.com/bayesian-modeling-of-pro-overwatch-matches-with-pymc3-f1b7d5fc22f1?source=collection_home---4------2---------------------
🔗 Bayesian Modeling of Pro Overwatch Matches with PyMC3
Professional eSports are becoming increasingly popular, and the industry is growing rapidly. Many of these professional game leagues are…
https://towardsdatascience.com/bayesian-modeling-of-pro-overwatch-matches-with-pymc3-f1b7d5fc22f1?source=collection_home---4------2---------------------
🔗 Bayesian Modeling of Pro Overwatch Matches with PyMC3
Professional eSports are becoming increasingly popular, and the industry is growing rapidly. Many of these professional game leagues are…
Towards Data Science
Bayesian Modeling of Pro Overwatch Matches with PyMC3
Professional eSports are becoming increasingly popular, and the industry is growing rapidly. Many of these professional game leagues are…
Finding similar images using Deep learning and Locality Sensitive Hashing
https://towardsdatascience.com/finding-similar-images-using-deep-learning-and-locality-sensitive-hashing-9528afee02f5?source=collection_home---4------1---------------------
🔗 Finding similar images using Deep learning and Locality Sensitive Hashing
A simple walkthrough on finding similar images through image embedding by a ResNet 34 using FastAI & Pytorch. Also doing fast semantic…
https://towardsdatascience.com/finding-similar-images-using-deep-learning-and-locality-sensitive-hashing-9528afee02f5?source=collection_home---4------1---------------------
🔗 Finding similar images using Deep learning and Locality Sensitive Hashing
A simple walkthrough on finding similar images through image embedding by a ResNet 34 using FastAI & Pytorch. Also doing fast semantic…
Towards Data Science
Finding similar images using Deep learning and Locality Sensitive Hashing
A simple walkthrough on finding similar images through image embedding by a ResNet 34 using FastAI & Pytorch. Also doing fast semantic…
Financial Machine Learning Part 1: Labels
https://towardsdatascience.com/financial-machine-learning-part-1-labels-7eeed050f32e?source=collection_home---4------0---------------------
🔗 Financial Machine Learning Part 1: Labels
Setting up a supervised learning problem
https://towardsdatascience.com/financial-machine-learning-part-1-labels-7eeed050f32e?source=collection_home---4------0---------------------
🔗 Financial Machine Learning Part 1: Labels
Setting up a supervised learning problem
Towards Data Science
Financial Machine Learning Part 1: Labels
Setting up a supervised learning problem
DeepLearning.AI Convolutional Neural Networks Deep Learning Specialization Course (Review)
https://machinelearningmastery.com/deeplearning-ai-convolutional-neural-networks-deep-learning-specialization-review/
https://machinelearningmastery.com/deeplearning-ai-convolutional-neural-networks-deep-learning-specialization-review/
Machine Learning Mastery
DeepLearning.AI Convolutional Neural Networks Course (Review) - Machine Learning Mastery
Andrew Ng is famous for his Stanford machine learning course provided on Coursera.
In 2017, he released a five-part course on deep learning also on Coursera titled
In 2017, he released a five-part course on deep learning also on Coursera titled
Speeding Up and Perfecting Your Work Using Parallel Computing
🔗 Speeding Up and Perfecting Your Work Using Parallel Computing
A detailed guide of Python multiprocessing vs. PySpark mapPartition
🔗 Speeding Up and Perfecting Your Work Using Parallel Computing
A detailed guide of Python multiprocessing vs. PySpark mapPartition
Towards Data Science
Speeding Up and Perfecting Your Work Using Parallel Computing
A detailed guide of Python multiprocessing vs. PySpark mapPartition
Understanding the Mathematics behind Gradient Descent.
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e?source=collection_home---4------0---------------------
🔗 Understanding the Mathematics behind Gradient Descent.
A simple mathematical intuition behind one of the commonly used optimisation algorithms in Machine Learning.
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e?source=collection_home---4------0---------------------
🔗 Understanding the Mathematics behind Gradient Descent.
A simple mathematical intuition behind one of the commonly used optimisation algorithms in Machine Learning.
Towards Data Science
Understanding the Mathematics behind Gradient Descent.
A simple mathematical intuition behind one of the commonly used optimisation algorithms in Machine Learning.
🎥 Getting Started with TensorFlow and Deep Learning | SciPy 2018 Tutorial | Josh Gordon
👁 1 раз ⏳ 9679 сек.
👁 1 раз ⏳ 9679 сек.
A friendly introduction to Deep Learning, taught at the beginner level. We’ll work through introductory exercises across several domains - including computer vision, natural language processing, and structured data classification. We’ll introduce TensorFlow - the world’s most popular open source machine learning library - preview the latest APIs (including Eager Execution), discuss best practices, and point you to recommended educational resources you can use to learn more.
Tutorial instructions may be fou
Vk
Getting Started with TensorFlow and Deep Learning | SciPy 2018 Tutorial | Josh Gordon
A friendly introduction to Deep Learning, taught at the beginner level. We’ll work through introductory exercises across several domains - including computer vision, natural language processing, and structured data classification. We’ll introduce TensorFlow…
🎥 Машинное обучение 4. SVM, PCA.
👁 1 раз ⏳ 3812 сек.
👁 1 раз ⏳ 3812 сек.
Лекция от 5 февраля 2019.
Лектор: Владислав Гончаренко
Снимал: Михаил Кревский
Монтировал: Александр Гришутин
Vk
Машинное обучение 4. SVM, PCA.
Лекция от 5 февраля 2019.
Лектор: Владислав Гончаренко
Снимал: Михаил Кревский
Монтировал: Александр Гришутин
Лектор: Владислав Гончаренко
Снимал: Михаил Кревский
Монтировал: Александр Гришутин
Beyond Chernoff faces: Multivariate visualization with metaphoric 3D glyphs
🔗 Beyond Chernoff faces: Multivariate visualization with metaphoric 3D glyphs
Visualizing multivariate data is notoriously difficult. The methods which are commonly used can be very valuable, but have significant…
🔗 Beyond Chernoff faces: Multivariate visualization with metaphoric 3D glyphs
Visualizing multivariate data is notoriously difficult. The methods which are commonly used can be very valuable, but have significant…
Medium
Beyond Chernoff faces: Multivariate visualization with metaphoric 3D glyphs
Visualizing multivariate data is notoriously difficult. The methods which are commonly used can be very valuable, but have significant…
Интенсивный курс "#Нейронныесети"
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
Лекция №1:
— Нейронные сети прямого распространения;
— backpropagation;
— обучение глубоких нейронных сетей;
— сверочные сети.
Лекция №2: "Генеративные сети".
Лекция №3: "Детекция и сегментация"
Лекция №4: "Face Recognition".
Лекция №5: "DSSM-like модели. Нейронные сети для работы с текстами".
Лекция №6: "RNN. Нейронные сети для работы с текстами".
🎥 Лекция №1. Интенсивный курс "Нейронные сети"
👁 15133 раз ⏳ 7854 сек.
🎥 Лекция №2. Интенсивный курс "Нейронные сети"
👁 12365 раз ⏳ 5859 сек.
🎥 Лекция №3. Интенсивный курс "Нейронные сети"
👁 4008 раз ⏳ 4993 сек.
🎥 Лекция №4. Интенсивный курс "Нейронные сети"
👁 13352 раз ⏳ 3381 сек.
🎥 Лекция №5. Интенсивный курс "Нейронные сети"
👁 26940 раз ⏳ 10701 сек.
🎥 Лекция №6. Интенсивный курс "Нейронные сети"
👁 11468 раз ⏳ 5212 сек.
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
Лекция №1:
— Нейронные сети прямого распространения;
— backpropagation;
— обучение глубоких нейронных сетей;
— сверочные сети.
Лекция №2: "Генеративные сети".
Лекция №3: "Детекция и сегментация"
Лекция №4: "Face Recognition".
Лекция №5: "DSSM-like модели. Нейронные сети для работы с текстами".
Лекция №6: "RNN. Нейронные сети для работы с текстами".
🎥 Лекция №1. Интенсивный курс "Нейронные сети"
👁 15133 раз ⏳ 7854 сек.
Лекция №1 интенсивного курса "Нейронные сети:
— Нейронные сети прямого распространения;
— backpropagation;
— обучение глубоких нейронных сетей;
— сверочные сети.
Лектор - Кузьма Храбров, Ведущий специалист группы ранжирования в Поиске Mail.Ru Group.
Материалы лекции - http://bit.ly/2utuLU6.
🎥 Лекция №2. Интенсивный курс "Нейронные сети"
👁 12365 раз ⏳ 5859 сек.
Лекция №2 интенсивного курса "Нейронные сети".
Тема лекции - "Генеративные сети".
Лектор - Кузьма Храбров, Ведущий специалист группы ранжирования в Поиске Mail.Ru Group.
Материалы лекции - http://bit.ly/2utuLU6.
🎥 Лекция №3. Интенсивный курс "Нейронные сети"
👁 4008 раз ⏳ 4993 сек.
Лекция №3 интенсивного курса "Нейронные сети".
Тема лекции - "Детекция и сегментация".
Лектор - Борис Лесцов, младший программист-исследователь в команде компьютерного зрения Mail.Ru Group.
Презентация - http://bit.ly/2LaE6KJ
🎥 Лекция №4. Интенсивный курс "Нейронные сети"
👁 13352 раз ⏳ 3381 сек.
Лекция №4 интенсивного курса "Нейронные сети".
Тема лекции - "Face Recognition".
Лекторы:
— Алексей Спасенов, программист-исследователь, группа предиктивной аналитики департамента рекламных технологий Mail.Ru Group.
— Борис Лесцов, младший программист-исследователь, команда компьютерного зрения Mail.Ru Group.
Презентация "Deep Metric Learning" - http://bit.ly/2JN6ihq
Презентация "Metric Learning for discriminative features" - http://bit.ly/2A40IaX
🎥 Лекция №5. Интенсивный курс "Нейронные сети"
👁 26940 раз ⏳ 10701 сек.
Лекция №5 интенсивного курса "Нейронные сети".
Тема сегодняшнего занятия — "DSSM-like модели. Нейронные сети для работы с текстами".
Лектор — Владимир Гулин, Руководитель отдела качества поиска Mail.Ru Group.
Презентация - http://bit.ly/2JXoXah
🎥 Лекция №6. Интенсивный курс "Нейронные сети"
👁 11468 раз ⏳ 5212 сек.
Лекция №6 интенсивного курса "Нейронные сети".
Тема сегодняшнего занятия — "RNN. Нейронные сети для работы с текстами".
Лектор — Денис Клюкин, программист в группе рекомендательных систем Mail.Ru Group.
Презентация — http://bit.ly/2OnIRi3
Китай вводит экспериментальную систему распознавания лиц при оплате проезда в метро
https://habr.com/ru/company/madrobots/blog/443776/
🔗 Китай вводит экспериментальную систему распознавания лиц при оплате проезда в метро
Поднебесная — весьма высокотехнологичное государство. Да, страну ругают за наплевательское отношение к неприкосновенности частной информации, которая собираетс...
https://habr.com/ru/company/madrobots/blog/443776/
🔗 Китай вводит экспериментальную систему распознавания лиц при оплате проезда в метро
Поднебесная — весьма высокотехнологичное государство. Да, страну ругают за наплевательское отношение к неприкосновенности частной информации, которая собираетс...
Хабр
Китай вводит экспериментальную систему распознавания лиц при оплате проезда в метро
Поднебесная — весьма высокотехнологичное государство. Да, страну ругают за наплевательское отношение к неприкосновенности частной информации, которая собирается самыми разными методами. Но с этим...
De Facto list of book from Geeks of Deep Learning. Happy learning from up-to-date resources. Updated list 2019
https://blog.floydhub.com/best-deep-learning-books-updated-for-2019/
🔗 Best Deep Learning Books: Updated for 2019
The list of the best machine learning & deep learning books for 2019.
https://blog.floydhub.com/best-deep-learning-books-updated-for-2019/
🔗 Best Deep Learning Books: Updated for 2019
The list of the best machine learning & deep learning books for 2019.
Data Minds: Jai Bansal — Data Scientist at Red Bull
Data Minds is a series that profiles professionals working with data. In this series, you’ll learn about their story, their day-to-day, as well as tips and advice for others.
https://towardsdatascience.com/data-minds-jai-bansal-data-scientist-at-red-bull-afdb141a0e26
🔗 Data Minds: Jai Bansal — Data Scientist at Red Bull
Data Minds is a series that profiles professionals working with data. In this series, you’ll learn about their story, their day-to-day, as…
Data Minds is a series that profiles professionals working with data. In this series, you’ll learn about their story, their day-to-day, as well as tips and advice for others.
https://towardsdatascience.com/data-minds-jai-bansal-data-scientist-at-red-bull-afdb141a0e26
🔗 Data Minds: Jai Bansal — Data Scientist at Red Bull
Data Minds is a series that profiles professionals working with data. In this series, you’ll learn about their story, their day-to-day, as…
Towards Data Science
Data Minds: Jai Bansal — Data Scientist at Red Bull
Data Minds is a series that profiles professionals working with data. In this series, you’ll learn about their story, their day-to-day, as…
TensorFlow Dev Summit 2019 wrap-up
🔗 TensorFlow Dev Summit 2019 wrap-up
For the second consecutive year, I was lucky enough to attend to the Tensorflow dev Summit on March 6–7 at Google Event Center Sunnyvale…
🔗 TensorFlow Dev Summit 2019 wrap-up
For the second consecutive year, I was lucky enough to attend to the Tensorflow dev Summit on March 6–7 at Google Event Center Sunnyvale…
Towards Data Science
2019 TensorFlow Dev Summit wrap-up
For the second consecutive year, I was lucky enough to attend to the Tensorflow dev Summit on March 6–7 at Google Event Center Sunnyvale…