Neural Networks | Нейронные сети
11.7K subscribers
766 photos
170 videos
170 files
9.42K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
加入频道
Forwarded from Machinelearning
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!

Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.

🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.

⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.

📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.

📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов

💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.

Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.

🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8

@ai_machinelearning_big_data


#qwen #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🚨 Oracle официально согласилась поставить OpenAI 2 МИЛЛИОНА AI-чипов

Что это значит?

OpenAI строит новый дата-центр под *чудовищную* нагрузку:
— 4.5 ГВт вычислений (это больше, чем у некоторых стран)
— стоимость — $30 млрд в год 😳

💸 SoftBank? Больше не при делах:
— «SoftBank не участвует в финансировании»
— переговоры по деньгам сорвались ещё в январе

Oracle теперь главный поставщик чипов для OpenAI.

4,5 гигаватта — этого достаточно, чтобы обеспечить электричеством 3,4 миллиона домов.
OpenAI буквально строит инфраструктуру с потреблением энергии на уровне небольшого города — только ради обучения ИИ.

🔜 Новость


@ai_machinelearning_big_data


#openai #news #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
📌 ИИ, который сам создает ИИ: ASI-ARCH нашел 106 новых SOTA-архитектур.

ASI-ARCH - экспериментальная демонстрация искусственного сверхинтеллекта для исследований в области ИИ, который способен полностью автономно вести научную работу по поиску новых нейросетевых архитектур.

Система самостоятельно выдвигает гипотезы, реализует их в виде исполняемого кода, обучает и проверяет на практике. Результатом этой работы стали 1773 автономных эксперимента, которые заняли свыше 20 000 GPU-часов и привели к открытию 106 новых SOTA-архитектур с линейным механизмом внимания.

🟡Весь процесс разделен на 2 этапа: поиск гипотез и их проверка.

На первом этапе, система работает с небольшими моделями размером около 20 млн параметров, обучая их на 1 млрд токенов. На этом этапе было проведено 1773 эксперимента, которые заняли примерно 10 000 GPU-часов.

Всего на этом этапе было отобрано 1350 перспективных кандидатов — все они превзошли базовую архитектуру DeltaNet как по лоссу, так и по метрикам на бенчмарках.

Второй этап - верификация. Кандидаты первого этапа были масштабированы до 340 млн параметров, чтобы соответствовать конфигурации DeltaNet. После фильтрации архитектур с избыточной сложностью или числом параметров осталось около 400 моделей.

Их обучение на 1 млрд. токенов потребовало ещё 10 000 GPU-часов. В итоге, именно из этой группы были выделены 106 архитектур, достигших SOTA-уровня.

Для финальной валидации исследователи отобрали 5 лучших моделей, обучили их на 15 млрд. токенов и сравнили с Mamba2, Gated DeltaNet и DeltaNet.

🟡 Анализ предпочтений системы показал интересные закономерности.

ASI-ARCH явно предпочитает работать с проверенными временем компонентами: гейтингом и свёрткой. Но самое главное - распределение компонентов в 106 лучших моделях имеет значительно менее выраженный long-tail distribution по сравнению с остальными 1667 сгенерированными архитектурами.

Это означает, что система добивается успеха не путем хаотичного перебора экзотических идей, а через итеративное улучшение набора проверенных техник. По сути, это очень напоминает методологию работы ученых-людей.

🟡Результаты.

Одна из лучших найденных ИИ-архитектур, PathGateFusionNet, показала средний результат по всем бенчмаркам 48.51. Для сравнения, Mamba2 набрала 47.84, а разработанная человеком Gated DeltaNet — 47.32. Другая генерация, ContentSharpRouter, достигла показателя 48.34.

Если посмотреть на отдельные тесты, то PathGateFusionNet получила на BoolQ 60.58 балла, а Gated DeltaNet - 60.12. AdaptiveEntropyRouter в версии на 340 млн. параметров показала результат на тестах 44.31, что на 2.21 пункта выше, чем у Gated DeltaNet (42.10).

И так практически во всем, улучшения наблюдаются по всему спектру задач.

🟡И самое интересное — откуда система черпает идеи? Источников всего 3:

🟢Cognition - знания, извлеченные из научной литературы;
🟢Analysis - выводы, сделанные на основе собственных прошлых экспериментов;
🟢Originality - абсолютно новые идеи.

Для всех 1773 сгенерированных архитектур распределение источников было таким:

🟠51.7% идей приходило из человеческой литературы;
🟠38.2% - из собственного анализа;
🟠10.1% были оригинальными.

Но если посмотреть только на 106 SOTA-итогов, картина меняется. Доля идей, основанных на Analysis, возрастает с 38.2% до 44.8%, а доля Cognition немного снижается до 48.6%.

Таким образом, чтобы достичь ощутимых результатов, ИИ недостаточно просто копировать и комбинировать человеческие наработки. Он должен анализировать собственный опыт, учиться на своих же удачах и провалах, синтезируя более совершенные решения.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Research #ASIARCH
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ GGUF-версии GPT-OSS от Unsloth.

Unsloth конвертировали обе GPT-OSS (20B и 120B) и исправили ошибки, чтобы повысить качество инференса.

🟡Оптимальный сетап:

🟢20B работает со скоростью более 10 токенов/с при полной точности на 14 ГБ оперативной памяти.

🟢120B с полной точностью будет давать >40 токенов/с на примерно 64 ГБ ОЗУ.

Минимальных требований для запуска моделей нет, запуститься можно даже если у вас всего 6 ГБ и только CPU, но инференс будет медленнее.

GPU не требуется , особенно для модели 20B, но его наличие значительно увеличивает скорость вывода (~80 токенов/с). С чем-то вроде H100 можно получить пропускную способность 140 токенов/с, и это значительно быстрее, чем у OpenAI в ChatGPT.

Модели можно запустить через llama.cpp, LM Studio или Open WebUI. Если модель 120B слишком медленная, попробуйте версию 20B - она очень быстрая и работает не хуже o3-mini.

Помимо моделей формата GGUF c полной точностью, Unsloth сделали версии с 4-bit и 16-bit точностью. 4-бинтый квант, кстати, можно файнтюнить на 24 ГБ VRAM.

📌 Подробная пошаговая инструкция по локальному запуску и файнтюну - в документации Unsloth.


🟡Набор моделей
🟡Документация


@ai_machinelearning_big_data

#AI #ML #GPTOSS #GGUF #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI инвестирует в Merge Labs - конкурента Neuralink.

OpenAI ведет переговоры об инвестициях в Merge Labs, стартап в области нейрокомпьютерных интерфейсов, который планирует создание высокоскоростных BCI-систем.

Merge Labs планирует привлечь 250 миллионов долларов при оценке в 850 миллионов. Сэм Альтман будет числиться сооснователем вместе с бывшим топ-менеджером Neuralink Алексом Бланиа, однако не будет заниматься операционной деятельностью. Ожидается, что основное финансирование поступит от венчурного подразделения OpenAI.

Этот шаг еще больше обостряет давнее соперничество между Альтманом и Маском, которые в 2015 году вместе основали OpenAI, но позже разошлись во взглядах.
ft.com

✔️ Контекстное окно Claude Sonnet 4 расширено до миллиона токенов.

Anthropic объявила о значительном увеличении контекстного окна для Claude Sonnet 4 до одного миллиона токенов. Это в 5 раз больше предыдущего лимита и позволит обрабатывать за один проход целые кодовые базы или большие массивы документов. Новая возможность уже доступна в публичной бете через API Anthropic, Amazon Bedrock, а в скором времени появится и в Google Cloud Vertex AI.

За расширение придется платить больше. Для запросов свыше 200 тыс. входных токенов цена удваивается и составит 6 долларов за миллион токенов. Стоимость выходных токенов также вырастет с 15 до 22.50 долларов за миллион.
anthropic.com

✔️ Microsoft ведет целенаправленную кампанию по найму топовых инженеров и исследователей из компании Марка Цукерберга.

Согласно внутренним документам, Microsoft составила список конкретных сотрудников с указанием их имен, ролей и принадлежности к командам: Reality Labs, GenAI Infrastructure и AI Research. Корпорация готова предложить им многомиллионные компенсационные пакеты - крупные бонусы при найме, конкурентные зарплаты, значительные пакеты акций и высокие годовые премии.

Для ускорения процесса в Microsoft внедрили специальную процедуру. Рекрутеры могут помечать кандидатов как "критически важные ИИ-таланты" и тогда процесс рассмотрения и утверждения на уровне руководства возможен в течение 24 часов.
businessinsider.com

✔️ AI2 выпустил открытую модель для робототехники.

Институт искусственного интеллекта Аллена представил MolmoAct 7B — опенсорсную модель для планирования движений роботов в трехмерном пространстве. Система интерпретирует команды на естественном языке, создает 3D-реконструкцию сцены и прокладывает траекторию движения, которую разработчик может просмотреть и скорректировать до того, как робот начнет действовать.

Модель на 7 млрд. параметров была обучена на 18 млн. примеров, в которых были включены 12 тыс. эпизодов из реального мира. В бенчмарке SimPLER система показала успешность выполнения задач в 72.1%, обойдя решения от Nvidia, Google и Microsoft.

AI2 опубликовал техотчет, веса и датасеты, позиционируя MolmoAct как свободно доступную альтернативу проприетарным решениям.
allenai.org

✔️ SEELE AI запустила публичное тестирование генератора 3D-игр по текстовому описанию.

Платформа создает полноценные, играбельные проекты на основе текстового описания на естественном языке, не требуя навыков программирования. Система использует большие модели для автоматической генерации всех ключевых элементов: 3D-сцен, персонажей и игровой логики, интегрируя текст, 3D-моделирование и физические движки.

Помимо основной генерации, инструмент поддерживает персонализацию созданных игр, предварительный просмотр в реальном времени и возможность оптимизации. SEELE AI позиционирует свой сервис не только как игровой инструмент, но и как платформу для создания контента в сфере образования, маркетинга и социальных сетей.
Попробовать инструмент можно на официальном сайте.
Seele AI в сети Х

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Google представила Gemma 3 270M — компактную модель

Модель 270 млн параметров (170M для эмбеддингов и 100M для трансформер-блоков), но с отличной способностью следовать промтпам прямо «из коробки».

🔹 Особенности
- 256k токенов
- Энергоэффективность: INT4-версия на Pixel 9 Pro расходует всего 0.75% батареи за 25 диалогов.
- Доступны предобученные и instruction-tuned чекпойнты.
- Поддержка Quantization-Aware Training (QAT) для запуска в INT4 без заметной потери качества.

💼 Когда использовать
- Массовые, чётко определённые задачи: анализ тональности, извлечение сущностей, обработка текста, комплаенс-проверки.
- Минимальные задержки и низкая стоимость инференса — можно запускать прямо на устройстве.
- Быстрые эксперименты с fine-tuning.
- Полная приватность данных благодаря on-device работе.
- Создание «флота» узкоспециализированных моделей.

В анонсе приводится пример, как Adaptive ML и SK Telecom дообучили Gemma 3 4B для мультиязычной модерации контента, превзойдя более крупные проприетарные модели.

Gemma 3 270M — отличная компактная модель, быстрая и дешёвая в работе.

🟠Подробности: https://developers.googleblog.com/en/introducing-gemma-3-270m/
🟠HF: https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d

#news #ai #ml #Gemma #google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🍌Стало известно, что nano-banana — это модель от Google

Если вы пропустили, эта модель стала вирусной на Арене, благодаря своим возможностям редактирования изображений: меняет цвет волос, одежды, целые образы и фоны, сохраняя стиль и детали персонажа.

Nano-banana демонстрирует высокое качество и согласованность, по сравнению с другими моделями на рынке.

📌 Попробовать можно на арене.

@ai_machinelearning_big_data


#NANOBANANA #AI #GenerativeAI #AIart
This media is not supported in your browser
VIEW IN TELEGRAM
🆕 Hugging Face представили **AI Sheets** — no-code инструмент для создания и обработки таблиц с помощью ИИ.

- Выглядит как обычная таблица, но вместо формул — тысячи моделей
- Поддержка OpenAI-совместимых и локальных LLM
- Можно добавлять столбцы с промптами, редактировать данные вручную или через лайки
- Запуск онлайн или локально (Docker / pnpm)
- Полностью опенсорс (Apache-2.0), легко встроить в пайплайны
- Подходит для классификации, трансформации данных, синтетики и «vibe-тестов» моделей

⚡️ Попробовать

#AI #NoCode #datasets #HuggingFace #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Google расширила доступ к ИИ-поиску на 180 стран и добавила функцию бронирования.

Google начала масштабное развертывание диалогового поискового режима AI Mode для 180 стран. Ранее функция работала только в США, Великобритании и Индии. Пока доступен только английский язык, а страны Евросоюза в список не вошли из-за строгих правил в области данных и ИИ.

Вместе с географическим расширением Google представила первую агентную возможность в AI Mode. Теперь пользователи в США могут находить и бронировать столики в ресторанах через платформы OpenTable и Resy, прямо из поисковой выдачи. В будущем планируется добавить бронирование билетов и запись на услуги. Эта функция пока доступна только подписчикам платного тарифа Google AI Ultra.
9to5google.com

✔️ Runway представила платформу для создания интерактивных ИИ-миров.

Компания анонсировала бета-версию платформы Game Worlds, на которой пользователи в реальном времени могут создавать и исследовать полностью сгенерированных персонажей, сюжеты и окружения.

Одновременно с этим Runway добавила в свой продукт Act-Two новую функцию «Voices». Она дает возможность подбирать и настраивать голоса для ИИ-персонажей.

Эти нововведения - часть стратегии компании по демократизации создания иммерсивного контента, делая его доступным для авторов без специальных навыков в программировании или анимации.
RunwayML в сети X

✔️ Появились тестовые образцы нового ИИ-чипа Intel Jaguar Shores

В сети появились фото тестовых образцов следующего поколения ИИ-архитектуры Jaguar Shores. Размер корпуса 92,5 мм на 92,5 мм, он включает 4 отдельных кристалла и 8 площадок памяти HBM, что явно указывает на платформу для высокопроизводительных вычислений.

Jaguar Shores станет первым стоечным решением Intel, планируется использование памяти HBM4 от SK Hynix и совместная работа с будущими процессорами Xeon Diamond Rapids.
wccftech.com

✔️ Streaming Sortformer: модель для распознавания говорящих в реальном времени.

NVIDIA выпустила Streaming Sortformer - модель для диаризации речи, которая мгновенно определяет и маркирует участников разговора в реальном времени с низкой задержкой.

Модель оптимизирована для английского и китайского языков, способна отслеживать до 4 говорящих одновременно и предназначена для работы на GPU. По результатам тестов, Streaming Sortformer показывает более низкий уровень ошибок (DER) по сравнению с конкурирующими решениями.

Streaming Sortformer подойдет для применения в колл-центрах, при создании протоколов встреч и в интерактивных голосовых приложениях, где важно точно знать, кто, что и когда сказал. Модель доступна на Hugging Face.
developer.nvidia.com

✔️ AMD официально представила технологию FSR 4.

AMD выпустила новейшую технологию масштабирования изображения FidelityFX Super Resolution 4 (FSR 4). Это часть обновления FidelityFX SDK 2.0, где AMD впервые внедряет алгоритм апскейлинга на основе машинного обучения для улучшения качества графики и производительности в играх.

По сравнению с предыдущей версией 3.1, FSR 4 показывает улучшения в детализации изображения и временной стабильности, а также снижает артефакты гостинга движущихся объектов. FSR 4 поддерживается только видеокартами AMD Radeon RX 9000 серии и выше на архитектуре RDNA 4 и требует DirectX 12. AMD также предоставила плагины FSR 4 для Unreal Engine версий 5.1–5.6.
gpuopen.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 MAD: алгоритм безопасной работы с огромными датасетами.

Большие данные - это топливо для ИИ. Но как их использовать, чтобы не нарушить приватность, например датасета, где есть персональные данные?

Один из вариантов - метод дифференциально-приватного отбора. Он выбирает из огромного набора уникальные элементы так, чтобы нельзя было соотнести их с конкретным человеком. А если данных - больше миллиарда? Для этого нужен более надежный подход.

Таким алгоритмом стал Max Adaptive Degree (MAD), представленный Google на ICML 2025. Он не только эффективнее других параллельных методов, но и работает с наборами данных на десятки и сотни миллиардов записей.

🟡Стандартный MAD метод состоит из 3 шагов:

🟢Каждому элементу присваивается вес (обычно по частоте использования).

🟢К весу добавляется случайный шум для защиты приватности.

🟢Выбираются только те элементы, чей вес с шумом превышает определенный порог.

Но тут появляется новая проблема - популярные элементы получают избыточный вес, который можно было бы использовать для менее частых, но ценных данных.

MAD решает ее с помощью адаптивного взвешивания, перераспределяя вес: забирает часть у популярных элементов и отдает тем, чьи значения уже находятся у порога. Это позволяет отобрать больше полезных данных без потери приватности.

Простой пример: представьте 100 пользователей, у каждого по 3 элемента. Один элемент (A) есть у всех, а остальные элементы уникальны. В базовом алгоритме элемент A получит слишком много веса (намного больше необходимого), а уникальные элементы - слишком мало. MAD "забирает" часть веса у A и распределяет его между уникальными элементами, давая им шанс пройти порог.


🟡MAD2R.

Метод можно использовать в несколько итераций, публикуя промежуточные результаты с шумом. Так можно еще точнее распределять вес между раундами.

В первом раунде запускается MAD как обычно, а во втором удаляются уже найденные элементы и те, которые явно не пройдут порог. Для остальных элементов применяется "смещение" веса на основе данных первого раунда.

На практике MAD показал отличные результаты. Всего за 2 этапа он отобрал больше полезных элементов, чем другие методы. Например, в Common Crawl (800 млрд. записей) он выбрал набор слов, который покрыл 99.9% всех записей и 97% уникальных слов с полным соблюдением приватности.


🟡Статья
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Selection #MAD #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 MiniCPM-V 4.5: компактная модель, которая бьет гигантов в мультимодальном ИИ.

Проект OpenBMB выпустил MiniCPM-V 4.5, мультимодальную модель на основе Qwen3-8B и SigLIP2-400M для распознавания изображений, серий изображений и видео, которая может работать на мобильных устройствах на более чем 30 языках.

OpenBMB - некоммерческое подразделение китайской технологической компании ModelBest, под патронажем Университета Цинхуа.

Среди инвесторов материнской ModelBest - Habo (Huawei), Primavera Capital Group и государственный Shenzhen Guozhong Venture Capital Management.


🟡Киллер-фича модели - эффективная работа с видео.

Благодаря унифицированному 3D-Resampler модель сжимает видео в 96 раз: шесть кадров разрешением 448x448 преобразуются всего в 64 токена, тогда как большинству MLLM для этого потребовалось бы 1536 токенов.

Это позволяет обрабатывать видео с частотой кадров до 10 FPS и длинные ролики без роста вычислительных затрат, что подтверждается топовыми результатами на наборах Video-MME, LVBench и MLVU.

Архитектура LLaVA-UHD позволяет модели работать с изображениями до 1,8 мегапикселей и любым соотношением сторон, используя в 4 раза меньше визуальных токенов.

Модель предлагает гибкий режим работы: быстрый ризонинг для повседневных задач и глубокий для сложных сценариев, переключаемый по требованию.

При общем объеме в 8 млрд. параметров, MiniCPM-V 4.5 набирает 77.0 баллов по комплексному бенчу OpenCompass. Этот результат не просто улучшает предыдущие версии, модель превосходит GPT-4o-latest и Gemini-2.0 Pro, обходит открытую Qwen2.5-VL с 72 миллиардами параметров и устанавливает новый стандарт для общего MLLM на OmniDocBench.

🟡С инференсом тоже нет проблем.

Доступны варианты для CPU через llama.cpp и ollama, есть квантованные версии в форматах int4, GGUF и AWQ, поддержка бэкендов SGLang и vLLM, возможность дообучения через Transformers и LLaMA-Factory, а также WebUI и оптимизированное iOS-приложение.

▶️ Чтобы было проще разобраться во всех вариантах запуска, разработчики заботливо подготовили подробный cookbook.


📌Лицензирование: MiniCPM Model License.


🟡Модель
🟡Demo
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #MiniCPM #OpenBMB
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 Google Labs запустила инструмент для структурированной оценки языковых моделей.

Stax - экспериментальный инструмент для разработчиков, который предлагает замену неформальному «вайб-тестингу» больших языковых моделей на структурированный, основанный на данных подход.

Stax оценивает модели на кастомных или готовых автоматизированных оценщиках, фокусируясь на метриках: беглость ответа, безопасность, задержка и процент успешного прохождения ручной проверки.

Есть дашборд для сравнения результатов разных моделей с визуальными индикаторами производительности.

Ключевые возможности: быстрые и повторяемые оценки, настройка метрик под конкретные продукты и сквозной рабочий процесс для экспериментов от прототипа до продакшена.

Инструмент должен помочь разработчикам принимать обоснованные решения при выборе и развертывании моделей.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🚀 Команда Qwen представила Qwen3-Max-Preview (Instruct) — свою крупнейшую модель на сегодняшний день, с более чем 1 триллионом параметров

По бенчмаркам Qwen3-Max-Preview опережает предыдущий флагман Qwen3-235B-A22B-2507.

Внутренние тесты и первые отзывы пользователей говорят о том, что модель стала сильнее в диалогах, агентных задачах, следовании инструкциям и обладает более широкими знаниями.

Qwen обещают очень скоро выпустить ещё что-то интересное.

Qwen3-Max-Preview уже доступна в Qwen Chat и через Alibaba Cloud API.

🟢Qwen Chat: https://chat.qwen.ai
🟢Alibaba Cloud API: https://modelstudio.console.alibabacloud.com/?tab=doc#/doc/?type=model&url=2840914_2&modelId=qwen3-max-preview

@ai_machinelearning_big_data


#AI #Qwen3 #LLM #AlibabaCloud #QwenChat
Please open Telegram to view this post
VIEW IN TELEGRAM