Building support for pollution-free cities: an Open Data workflow
https://towardsdatascience.com/building-support-for-pollution-free-cities-an-open-data-workflow-888096797cc9?source=collection_home---4------0---------------------
🔗 Building support for pollution-free cities: an Open Data workflow
Air pollution is one of the great killers of our age, causing 6.4 million deaths in 2015 according to a Lancet study — compared with 0.7…
https://towardsdatascience.com/building-support-for-pollution-free-cities-an-open-data-workflow-888096797cc9?source=collection_home---4------0---------------------
🔗 Building support for pollution-free cities: an Open Data workflow
Air pollution is one of the great killers of our age, causing 6.4 million deaths in 2015 according to a Lancet study — compared with 0.7…
Towards Data Science
Building support for pollution-free cities: an Open Data workflow
Air pollution is one of the great killers of our age, causing 6.4 million deaths in 2015 according to a Lancet study — compared with 0.7…
🎥 Александр Радионов | Город IT 2018 | Storekeeper – поиск дубликатов товаров
👁 1 раз ⏳ 1698 сек.
👁 1 раз ⏳ 1698 сек.
Секция "Машинное обучение"
Vk
Александр Радионов | Город IT 2018 | Storekeeper – поиск дубликатов товаров
Секция "Машинное обучение"
🎥 Practical Deep Learning - Part 1
👁 1 раз ⏳ 15180 сек.
👁 1 раз ⏳ 15180 сек.
In this first part of Practical deep learning course you will learn about most cutting edge deep learning technology. Along the way you will be exposed to :
- Image classification using transfer learning
- How to set hyper-parameter , learning rate
- Practical deep learning application
- Image collection
- - Parallel downloading
- - Creating a validation set, and
- - Data cleaning, using the model to help us find data problems.
- Image segmentation
- Fine tuning
- Natural language processing
- Tabular
- Co
Vk
Practical Deep Learning - Part 1
In this first part of Practical deep learning course you will learn about most cutting edge deep learning technology. Along the way you will be exposed to :
- Image classification using transfer learning
- How to set hyper-parameter , learning rate
- Practical…
- Image classification using transfer learning
- How to set hyper-parameter , learning rate
- Practical…
Unsupervised Learning
https://www.youtube.com/watch?v=8dqdDEyzkFA
🎥 Unsupervised Learning
👁 1 раз ⏳ 647 сек.
https://www.youtube.com/watch?v=8dqdDEyzkFA
🎥 Unsupervised Learning
👁 1 раз ⏳ 647 сек.
Unsupervised learning is the most exciting subfield of machine learning! Finding structure in unstructured data automatically sounds like a dream come true, no need to have a label! In this video, I'll demonstrate 2 types of unsupervised learning techniques; k means clustering and principal component analysis. We'll use these techniques on neural data from a patient suffering from seizures to see if we can locate the part of their brain in need of surgery to save their life. You'll laugh, you'll cry, but mo
YouTube
Unsupervised Learning
Unsupervised learning is the most exciting subfield of machine learning! Finding structure in unstructured data automatically sounds like a dream come true, no need to have a label! In this video, I'll demonstrate 2 types of unsupervised learning techniques;…
🎥 Machine Learning: основы и опыт применения.
👁 1 раз ⏳ 2244 сек.
👁 1 раз ⏳ 2244 сек.
Machine Learning, основы и опыт применения
IT-Trends Conference 2019, Херсон
Основные тезисы:
- Что объединяет Machine Learning, уточек и beauty-industry
- Теоретические основы Machine Learning - подходы и методы
- Какие задачи можно решать с помощью Machine Learning
Спикер: Павел Кнорр, Team Lead и Architect, Logicify.
Более восьми лет работы в IT сфере. Начинал, как full stack-разработчик, последние четыре года отвечал за создание основой архитектуры, поиск и реализацию технических решений. На нескольк
Vk
Machine Learning: основы и опыт применения.
Machine Learning, основы и опыт применения
IT-Trends Conference 2019, Херсон
Основные тезисы:
- Что объединяет Machine Learning, уточек и beauty-industry
- Теоретические основы Machine Learning - подходы и методы
- Какие задачи можно решать с помощью Machine…
IT-Trends Conference 2019, Херсон
Основные тезисы:
- Что объединяет Machine Learning, уточек и beauty-industry
- Теоретические основы Machine Learning - подходы и методы
- Какие задачи можно решать с помощью Machine…
🎥 Иван Комаров | Город IT 2018 | Задачи машинного обучения в финансовой сфере
👁 1 раз ⏳ 1734 сек.
👁 1 раз ⏳ 1734 сек.
Секция "Машинное обучение"
Vk
Иван Комаров | Город IT 2018 | Задачи машинного обучения в финансовой сфере
Секция "Машинное обучение"
Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 4
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
https://www.youtube.com/watch?v=yLYHDSv-288
🎥 Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 4
👁 1 раз ⏳ 4935 сек.
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
https://www.youtube.com/watch?v=yLYHDSv-288
🎥 Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 4
👁 1 раз ⏳ 4935 сек.
Professor Christopher Manning
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science
Director, Stanford Artificial Intelligence Laboratory (SAIL)
To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs224n/index.html#schedule
To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html
To view all online courses and programs offered by Stanford, v
YouTube
Stanford CS224N: NLP with Deep Learning | Winter 2019 | Lecture 4 – Backpropagation
For more information about Stanford’s Artificial Intelligence professional and graduate programs, visit: https://stanford.io/3qAoAeO
Professor Christopher Manning
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science…
Professor Christopher Manning
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science…
🎥 Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 2
👁 1 раз ⏳ 4844 сек.
👁 1 раз ⏳ 4844 сек.
Professor Christopher Manning
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science
Director, Stanford Artificial Intelligence Laboratory (SAIL)
To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs224n/index.html#schedule
To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html
To view all online courses and programs offered by Stanford, v
Vk
Stanford CS224n: Natural Language Processing with Deep Learning | Winter 2019 | Lecture 2
Professor Christopher Manning
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science
Director, Stanford Artificial Intelligence Laboratory (SAIL)
To follow along with the course schedule and syllabus, visit: ht…
Thomas M. Siebel Professor in Machine Learning, Professor of Linguistics and of Computer Science
Director, Stanford Artificial Intelligence Laboratory (SAIL)
To follow along with the course schedule and syllabus, visit: ht…
🎥 Healthcare Data
👁 1 раз ⏳ 3359 сек.
👁 1 раз ⏳ 3359 сек.
I recently flew to Singapore to give a keynote on AI in healthcare and attend a panel discussion on the same topic hosted by School of AI and sponsored by Accenture. School of AI is a nonprofit with a goal of giving everyone on Earth a world-class AI education for free. This was a launch event for our first global hackathon called Health Hack that will be hosted in over 30 cities around the world by our Deans (community representatives). In this video, you'll learn about automated diagnostics, synthetic bio
Vk
Healthcare Data
I recently flew to Singapore to give a keynote on AI in healthcare and attend a panel discussion on the same topic hosted by School of AI and sponsored by Accenture. School of AI is a nonprofit with a goal of giving everyone on Earth a world-class AI education…
🎥 What is new in TensorFlow 2.0
👁 1 раз ⏳ 334 сек.
👁 1 раз ⏳ 334 сек.
TensorFlow 2.0 is finally here! Let's take a look at what's new and write some code!
The code is available at the GitHub repository for the series:
https://github.com/isikdogan/deep_learning_tutorials
TensorFlow 2.0 Resources:
https://www.tensorflow.org/alpha
https://www.tensorflow.org/guide
https://www.tensorflow.org/alpha/tutorials
Hands-on Deep Learning: TensorFlow Coding Sessions
https://www.youtube.com/watch?v=1KzJbIFnVTE&list=PLWKotBjTDoLhcczRktdYukFDU3BwXRNaN
Deep Learning Crash Course
https://ww
Vk
What is new in TensorFlow 2.0
TensorFlow 2.0 is finally here! Let's take a look at what's new and write some code!
The code is available at the GitHub repository for the series:
https://github.com/isikdogan/deep_learning_tutorials
TensorFlow 2.0 Resources:
https://www.tensorflow.org/alpha…
The code is available at the GitHub repository for the series:
https://github.com/isikdogan/deep_learning_tutorials
TensorFlow 2.0 Resources:
https://www.tensorflow.org/alpha…
Practical Deep Learning - Part 2
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
https://www.youtube.com/watch?v=vuEkaESsrmY
🎥 Practical Deep Learning - Part 2
👁 1 раз ⏳ 6219 сек.
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
https://www.youtube.com/watch?v=vuEkaESsrmY
🎥 Practical Deep Learning - Part 2
👁 1 раз ⏳ 6219 сек.
In this first part of Practical deep learning course you will learn about most cutting edge deep learning technology. Along the way you will be exposed to :
- Image classification using transfer learning
- How to set hyper-parameter , learning rate
- Practical deep learning application
- Image collection
- - Parallel downloading
- - Creating a validation set, and
- - Data cleaning, using the model to help us find data problems.
- Image segmentation
- Fine tuning
- Natural language processing
- Tabular
- Co
YouTube
Practical Deep Learning - Part 2
In this first part of Practical deep learning course you will learn about most cutting edge deep learning technology. Along the way you will be exposed to : ...
🎥 Real Talk with Google Data Scientist (with a PhD in Physics)
👁 3 раз ⏳ 730 сек.
👁 3 раз ⏳ 730 сек.
Talking data science with Michael, a data scientist at Google. Previously at Mercedes. Want to learn data science with a job guarantee? Check out Springboard's Data Science Career Track: https://www.springboard.com/workshops/data-science-career-track/?utm_source=youtube&utm_campaign=dsc_influencer&utm_medium=video&utm_term=michael
0:22 How did you go from PhD in physics to data science?
1:09 What was working at Mercedes like?
1:55 How do you think about data before implementing tools?
3:09 What’s the Googl
Vk
Real Talk with Google Data Scientist (with a PhD in Physics)
Talking data science with Michael, a data scientist at Google. Previously at Mercedes. Want to learn data science with a job guarantee? Check out Springboard's Data Science Career Track: https://www.springboard.com/workshops/data-science-career-track/?ut…
Sigmoid Neuron Learning Algorithm Explained With Math
In this post, we will discuss the mathematical intuition behind the sigmoid neuron learning algorithm in detail.
https://towardsdatascience.com/sigmoid-neuron-learning-algorithm-explained-with-math-eb9280e53f07?source=collection_home---4------1---------------------
🔗 Sigmoid Neuron Learning Algorithm Explained With Math
In this post, we will discuss the mathematical intuition behind the sigmoid neuron learning algorithm in detail.
In this post, we will discuss the mathematical intuition behind the sigmoid neuron learning algorithm in detail.
https://towardsdatascience.com/sigmoid-neuron-learning-algorithm-explained-with-math-eb9280e53f07?source=collection_home---4------1---------------------
🔗 Sigmoid Neuron Learning Algorithm Explained With Math
In this post, we will discuss the mathematical intuition behind the sigmoid neuron learning algorithm in detail.
Towards Data Science
Sigmoid Neuron Learning Algorithm Explained With Math
In this post, we will discuss the mathematical intuition behind the sigmoid neuron learning algorithm in detail.
Guide to Coding a Custom Convolutional Neural Network in TensorFlow Core
Tutorial for Developing in the Low-Level API
https://towardsdatascience.com/guide-to-coding-a-custom-convolutional-neural-network-in-tensorflow-bec694e36ad3?source=collection_home---4------0---------------------
🔗 Guide to Coding a Custom Convolutional Neural Network in TensorFlow Core
Tutorial for Developing in the Low-Level API
Tutorial for Developing in the Low-Level API
https://towardsdatascience.com/guide-to-coding-a-custom-convolutional-neural-network-in-tensorflow-bec694e36ad3?source=collection_home---4------0---------------------
🔗 Guide to Coding a Custom Convolutional Neural Network in TensorFlow Core
Tutorial for Developing in the Low-Level API
Towards Data Science
Guide to Coding a Custom Convolutional Neural Network in TensorFlow Core
Tutorial for Developing in the Low-Level API
An All-Neural On-Device Speech Recognizer
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
http://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html/
🔗 An All-Neural On-Device Speech Recognizer
Posted by Johan Schalkwyk, Google Fellow, Speech Team In 2012, speech recognition research showed significant accuracy improvements with ...
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
http://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html/
🔗 An All-Neural On-Device Speech Recognizer
Posted by Johan Schalkwyk, Google Fellow, Speech Team In 2012, speech recognition research showed significant accuracy improvements with ...
research.google
An All-Neural On-Device Speech Recognizer
Posted by Johan Schalkwyk, Google Fellow, Speech Team In 2012, speech recognition research showed significant accuracy improvements with deep learn...
#GANPaint
GANPaint: An Extraordinary Image Editor AI
https://www.youtube.com/watch?v=iM4PPGDQry0
🎥 GANPaint: An Extraordinary Image Editor AI
👁 3 раз ⏳ 216 сек.
GANPaint: An Extraordinary Image Editor AI
https://www.youtube.com/watch?v=iM4PPGDQry0
🎥 GANPaint: An Extraordinary Image Editor AI
👁 3 раз ⏳ 216 сек.
📝 The paper " GAN Dissection: Visualizing and Understanding Generative Adversarial Networks " is available here:
https://gandissect.csail.mit.edu
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
313V, Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Christian Ahlin, Christoph Jadanowski, Claudio Fernandes, Dennis Abts, Eric Haddad, Eric Martel,
YouTube
GANPaint: An Extraordinary Image Editor AI
📝 The paper " GAN Dissection: Visualizing and Understanding Generative Adversarial Networks " and its web demo is available here:
https://gandissect.csail.mit.edu
http://gandissect.res.ibm.com/ganpaint.html
❤️ Pick up cool perks on our Patreon page: htt…
https://gandissect.csail.mit.edu
http://gandissect.res.ibm.com/ganpaint.html
❤️ Pick up cool perks on our Patreon page: htt…
🎥 Модификация награды в алгоритмах обучения с подкреплением
👁 1 раз ⏳ 975 сек.
👁 1 раз ⏳ 975 сек.
Конечная формулировка задачи обучения с подкреплением включает в себя функцию награды. Зачастую эта функция определяет насколько эффективно будут обучаться те или иные алгоритмы, а так же то, как выглядит оптимальная политика для задачи.
На семинаре мы посмотрим на примеры того, как можно изменять сходимость методов обучения с подкреплением при помощи модификации функции награды различными способами. Так же мы поговорим про основанные на методе потенциалов аддитивные добавки к функции награды, чем они хоро
Vk
Модификация награды в алгоритмах обучения с подкреплением
Конечная формулировка задачи обучения с подкреплением включает в себя функцию награды. Зачастую эта функция определяет насколько эффективно будут обучаться те или иные алгоритмы, а так же то, как выглядит оптимальная политика для задачи.
На семинаре мы посмотрим…
На семинаре мы посмотрим…
PyData Ann Arbor: Sebastian Raschka | An Introduction to Deep Learning with TensorFlow
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
https://www.youtube.com/watch?v=vRF7ENlwD50
🔗 Переадресация Telegram
🎥 PyData Ann Arbor: Sebastian Raschka | An Introduction to Deep Learning with TensorFlow
👁 1 раз ⏳ 3415 сек.
Наш телеграм канал - https://tele.click/ai_machinelearning_big_data
https://www.youtube.com/watch?v=vRF7ENlwD50
🔗 Переадресация Telegram
🎥 PyData Ann Arbor: Sebastian Raschka | An Introduction to Deep Learning with TensorFlow
👁 1 раз ⏳ 3415 сек.
PyData Ann Arbor Meetup - August 24, 2017
Sponsored by NumFOCUS, TD Ameritrade, and MIDAS
https://www.meetup.com/PyData-Ann-Arbor/
PyData Ann Arbor: Sebastian Raschka | An Introduction to Deep Learning with TensorFlow
As a Ph.D. candidate at Michigan State University, Sebastian Raschka is developing novel computational methods in the field of computational biology. Among others, his research activities include the development of new deep learning architectures to solve problems in the field of biometric
YouTube
PyData Ann Arbor: Sebastian Raschka | An Introduction to Deep Learning with TensorFlow
PyData Ann Arbor Meetup - August 24, 2017 Sponsored by NumFOCUS, TD Ameritrade, and MIDAS https://www.meetup.com/PyData-Ann-Arbor/ PyData Ann Arbor: Sebastia...