Forwarded from Machinelearning
PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.
Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.
PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.
Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.
⚠️ PydanticAI находится на ранней стадии бета-тестирования.
# Install via PyPI
pip install pydantic-ai
# Set Gemini API key
export GEMINI_API_KEY=your-api-key
# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""
@ai_machinelearning_big_data
#AI #ML #LLM #Agents #Framework #PydanticAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8👍2❤1
Forwarded from Machinelearning
Этот проект был создан, с целью изучения понимания внутренней работы PyTorch и других популярных фреймворков глубокого обучения.
Главная цель проекта - создание с нуля минималистичного, но при этом мощного фреймворк глубокого обучения, который можно использовать как для исследований, так и для продакшена.
Фреймворк написан на C и Python и спроектирован так, чтобы его было легко понять и модифицировать.
Знаменитая цитат Ричарда Фейнмена - То, что я не могу создать, я не понимаю.
Создание собственного языка программирования, игрового движка и конечно фреймворка машинного обучения позволит понять, как работает современное программное обеспечение, до мельчайших деталей.
◾️GitHub
◾️Demo
◾️Docs
@ai_machinelearning_big_data
#c99 #python #framework
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥4❤1
Forwarded from Machinelearning
InfiniteHiP - опенсорсный инструмент, разработанный сервисом deepauto.ai, который позволяет значительно расширить контекст LLM, обрабатывая до 3 миллионов токенов на одном GPU.
InfiniteHiP использует модульный иерархический алгоритм прунинга токенов, динамически отсеивая нерелевантные элементы контекста. Это позволяет ускорить обработку и обойти ограничения GPU по памяти, перенося KV-кэш в память хоста.
Прунинг-модули алгоритма избирательно отбрасывают менее важные входные токены, опираясь на разреженность шаблонов и пространственную локализацию в матрицах внимания LLM.
Алгоритм делит входную последовательность на чанки фиксированной длины и определяет аппроксимированный top-1 токен с наивысшим attention score в каждом чанке. Затем только top-K наиболее значимых чанков передаются в следующий модуль, а остальные отбрасываются.
Максимально эффективная реализация InfiniteHiP на SGLang фреймворке показывает 7.24-кратное ускорение в end-to-end декодировании на контексте в 3 млн. при использовании всего 3.34% VRAM, необходимой для Flash Attention 2.
InfiniteHiP превосходит существующие методы в задачах QA по объемным документам, обобщении и в мульти-шот ризонинге. HiP демонстрирует отличные OOL (out-of-likelihood) способности, сохраняя производительность при увеличении длины контекста, в то время как другие методы на таких задачах ощутимо деградируют.
InfiniteHiP может использоваться с любыми моделями на архитектуре Transformers.
git clone [email protected]:DeepAuto-AI/hip-attention.git
cd hip-attention
conda create --name hip python=3.11
conda activate hip
pip install -e "."
# Optional for development
pip install -e ".[dev]"
# Optional, depends on your CUDA environment
export CUDACXX=/usr/local/cuda/bin/nvcc
# Dependencies that requires --no-build-isolation
pip install -e ".[no_build_iso]" \
--no-build-isolation \
--verbose
# SGLang with OpenAI API support for serving
pip install -e ".[sglang]" \
--no-build-isolation \
--verbose \
--find-links https://flashinfer.ai/whl/cu124/torch2.4/flashinfer/
# Access the `hip` package from any project
import torch
from hip import hip_attention_12, HiPAttentionArgs12
device = 'cuda'
batch_size = 1
kv_len = 128 * 1024
q_len = 32 * 1024
num_heads = 32
num_kv_heads = 8
head_dims = 128
dtype = torch.bfloat16
q = torch.randn(
(batch_size, q_len, num_heads, head_dims),
dtype=dtype,
device=device
)
k = torch.randn(
(batch_size, kv_len, num_kv_heads, head_dims),
dtype=dtype,
device=device,
)
v = k.clone()
output, metadata = hip_attention_12(q=q, k=k, v=v, args=HiPAttentionArgs12())
print(output.shape)
# > torch.Size([1, 32768, 32, 128])
@ai_machinelearning_big_data
#AI #ML #InfiniteHiP #Framework
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2
Forwarded from Machinelearning
V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.
В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.
Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.
Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.
Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.
На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.
Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:
⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.
@ai_machinelearning_big_data
#AI #ML #VLM #RL #Framework #MiniMax
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2🔥2