Forwarded from Machinelearning
Что она умеет:
-
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы:
.wav
и .flac
, моно 16 кГц. - Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
@ai_machinelearning_big_data
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2🥰1
Forwarded from Machinelearning
🐋 Гигантский кит приплыл к нам!
🚀 DeepSeek обновился до V3.1.
Следите за новостями, волна только набирает силу.
✨ Новый LLM: deepseek-ai/DeepSeek-V3.1-Base
⚡ 685B параметров
📏 Контекстное окно 128k
https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base
@ai_machinelearning_big_data
#DeepSeek #AI #LLM #V3_1 #MachineLearning
🚀 DeepSeek обновился до V3.1.
Следите за новостями, волна только набирает силу.
✨ Новый LLM: deepseek-ai/DeepSeek-V3.1-Base
⚡ 685B параметров
📏 Контекстное окно 128k
https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base
@ai_machinelearning_big_data
#DeepSeek #AI #LLM #V3_1 #MachineLearning
❤8🔥5👍3
🧠 Reasoning — это не «да/нет».
Сегодня почти все LLM обучены на схожих RL-техниках. Разница не в том, есть reasoning или нет, а в том, сколько усилий модель тратит на рассуждения.
🔎 Примеры:
- Claude — многие называют «non-reasoning», но именно они первыми ввели спец-токены и режим *«thinking deeply, stand by…»*.
- DeepSeek v3.1 тоже явно тратит токены на рассуждения, просто это пока не так очевидно.
- GPT-5 в thinking-режиме выдаёт лучшие результаты, используя почти в 2 раза меньше токенов, чем o3.
⚡ Ключ — токены на ответ. Их редко показывают, но именно они отражают реальное «усилие reasoning».
R1-0528 и Qwen подняли метрики за счёт увеличения reasoning-токенов, но это не всегда полезно для юзера.
👉 Правильный взгляд: reasoning = спектр.
Цена и ценность модели = активные параметры × число reasoning-токенов.
#AI #LLM #reasoning #benchmarks
Сегодня почти все LLM обучены на схожих RL-техниках. Разница не в том, есть reasoning или нет, а в том, сколько усилий модель тратит на рассуждения.
🔎 Примеры:
- Claude — многие называют «non-reasoning», но именно они первыми ввели спец-токены и режим *«thinking deeply, stand by…»*.
- DeepSeek v3.1 тоже явно тратит токены на рассуждения, просто это пока не так очевидно.
- GPT-5 в thinking-режиме выдаёт лучшие результаты, используя почти в 2 раза меньше токенов, чем o3.
⚡ Ключ — токены на ответ. Их редко показывают, но именно они отражают реальное «усилие reasoning».
R1-0528 и Qwen подняли метрики за счёт увеличения reasoning-токенов, но это не всегда полезно для юзера.
👉 Правильный взгляд: reasoning = спектр.
Цена и ценность модели = активные параметры × число reasoning-токенов.
#AI #LLM #reasoning #benchmarks
❤5👍3🔥3
Forwarded from Machinelearning
По слухам, которые появились из-за поста инженера DeepMind Патрика Лоебера в сети Х, на этой неделе мы увидим инпейнт-модель для редактирования изображений под названием Nano Banana.
Модель наделала шуму на Lmarena, да и тестеры предварительных версий отмечают способность вносить очень точечные изменения в изображение, не затрагивая другие его элементы.
При этом качество изображений, генерируемое Nano Banana сопоставимо с результатами более крупных и ресурсоемких систем.
Официально Google пока не объявляла дату запуска и не раскрывала информацию о ценах.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍3🔥2