Machine learning Interview
46.5K subscribers
1.18K photos
87 videos
14 files
807 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
加入频道
Forwarded from Machinelearning
🌟 PlayDiffusion: инпейнт для речи.

Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.

Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.

PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.

В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.

После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.

Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:

🟢Во-первых, это некаузальное маскирование, позволяющее модели одновременно учитывать прошлые, настоящие и будущие токены, в отличие от стандартных GPT-подобных моделей.

🟢Во-вторых, используется кастомный BPE-токенизатор всего на 10 000 текстовых токенов, что резко сокращает размер таблицы эмбеддингов и ускоряет вычисления.

🟢В-третьих, модель учитывает характеристики диктора с помощью предобученной эмбеддинг-модели, которая преобразует аудиозаписи переменной длины в векторы фиксированного размера.

Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.

Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7🔥5🥰1
Forwarded from Machinelearning
🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍4🥰2🤣1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!

Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.

Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций


💡 Бонус для разработчиков:

Добавь файл notebook.ipynb в свой репозиторий модели — и Hugging Face автоматически подхватит его.
Пользователи смогут запускать твой пример сразу, без копирования кода!

🔥 Работает с Google Colab — бесплатно, быстро, удобно.

#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning

✔️ Подробнее

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
18🔥11👍4❤‍🔥2