Forwarded from Machinelearning
ML-комьюнити о крупнейших запусках LLM начала 2025 года:
✔️ DeepSeek — революция или переоцененный запуск?
Запуск китайской модели всколыхнул всю индустрию, вызвав неоднозначную реакцию экспертов. CEO Anthropic Дарио Амодей отмечает, что Claude 3.5 Sonnet, обученный за несколько десятков миллионов долларов, значительно опережает DeepSeek по многим показателям, плюс у модели нет никаких барьеров против генерации чувствительной информации. Демис Хассабис, генеральный директор Google DeepMind, считает DeepSeek лучшей работой китайских исследователей, но не видит в ней новых научных достижений.
✔️ Grok 3 — Маск не дотянул
ИИ-исследователь и профессор Пенсильванского университета Итан Моллик признал, что xAI очень быстро растёт, но Grok 3 пока точно не является лучшей моделью на рынке. Она превосходит некоторые модели OpenAI, но не o3. CTO Caylent Рэнделл Хант обнаружил ряд проблем с Grok 3: уязвимость к джейлбрейкам, неуместную саркастичность, медлительность и частые ошибки в ответах. По его словам, даже простые логические тесты оказались ей не под силу, что делает модель практически бесполезной для бизнес-задач. При этом CEO Replit Амджад Масад назвал Grok 3 передовой моделью и огромным достижением.
✔️ GPT-4.5 — не оправдал ожиданий экспертов
Релиз GPT-4.5 от OpenAI получил смешанные отзывы в профессиональном сообществе. Соучредитель OpenAI и бывший глава Tesla AI Андрей Карпатый отметил, что GPT-4.5 напомнил ему GPT-4 на момент релиза — он увидел потенциал этой модели. В посте на X он сказал, что при использовании GPT-4.5 «всё стало немного лучше, и это здорово, но не совсем так, как можно было бы ожидать». В более резких выражениях высказался известный критик Гэри Маркус, назвавший модель «пустышкой». Генеральный директор Hugging Face Клемент Деланж также остался недоволен, охарактеризовав GPT-4.5 как «так себе» и раскритиковав закрытость исходного кода.
✔️ YandexGPT 5 — что в России?
Виктор Тарнавский, директор по ИИ Т-Банка, отметил, что в Яндексе выложили Lite-версию модели в опенсорс, а пайплайн Pro-версии инициализировали весами от Qwen 2.5. По его мнению, это правильное решение, позволяющее избежать бессмысленной траты ресурсов. При этом, пишет Тарнавский, разработчики делают не файнтюн, а полный цикл обучения модели — просто стартуют претрейн не с нулевых весов. По опубликованным бенчмаркам, модели показывают хорошие результаты. В СМИ также писали, что Яндекс работает над ризонингом. Максим Болотских, директор ИИ в Яков и Партнёры (ex-McKinsey), прокомментировал, что ежегодные совокупные затраты на разработку подобного функционала могут составлять 10 млрд рублей и более, и такого рода модели могут монетизироваться не только классическими подписками B2C пользователей, но и значимо лучше решать задачи В2В-сегмента.
✔️ Gemini 2.0 Flash — лучшее соотношение цена/качество
Релиз Gemini 2.0 Flash от Google получил восторженные отклики экспертов. Тим Брукс, ИИ-исследователь в Google DeepMind, высоко оценил встроенную функцию генерации изображений с возможностью визуальной цепочки рассуждений. Соучредитель и бывший глава Intel AI Райан Карсон назвал модель "умной, быстрой и дешёвой", отметив отличную производительность при тестировании через API. Мэтт Шумер, соучредитель и генеральный директор компании OthersideAI, подчеркнул, что по большинству бенчмарков Gemini 2.0 Flash приближается к Claude 3.5 Sonnet и даже превосходит его в бенчмарке MATH, сохраняя при этом значительное ценовое преимущество.
✔️ Claude 3.7 — достойный шаг вперёд при умеренных затратах
Релиз Claude 3.7 от Anthropic получил преимущественно положительные отзывы экспертов. Сэм Альтман и Дарио Амодей подчеркнули экономическую эффективность разработки — обучение Claude 3.7 Sonnet обошлось лишь в несколько десятков миллионов долларов, что значительно меньше затрат на GPT-4. Артём Санакоев, ИИ-исследователь в Meta Generative AI и автор канала "эйай ньюз", выделил инновационный подход Anthropic к рассуждениям модели — в отличие от конкурентов, Claude использует единую модель без отдельного reasoning тюна.
@ai_machinelearning_big_data
#AI #ML #LLM
Запуск китайской модели всколыхнул всю индустрию, вызвав неоднозначную реакцию экспертов. CEO Anthropic Дарио Амодей отмечает, что Claude 3.5 Sonnet, обученный за несколько десятков миллионов долларов, значительно опережает DeepSeek по многим показателям, плюс у модели нет никаких барьеров против генерации чувствительной информации. Демис Хассабис, генеральный директор Google DeepMind, считает DeepSeek лучшей работой китайских исследователей, но не видит в ней новых научных достижений.
ИИ-исследователь и профессор Пенсильванского университета Итан Моллик признал, что xAI очень быстро растёт, но Grok 3 пока точно не является лучшей моделью на рынке. Она превосходит некоторые модели OpenAI, но не o3. CTO Caylent Рэнделл Хант обнаружил ряд проблем с Grok 3: уязвимость к джейлбрейкам, неуместную саркастичность, медлительность и частые ошибки в ответах. По его словам, даже простые логические тесты оказались ей не под силу, что делает модель практически бесполезной для бизнес-задач. При этом CEO Replit Амджад Масад назвал Grok 3 передовой моделью и огромным достижением.
Релиз GPT-4.5 от OpenAI получил смешанные отзывы в профессиональном сообществе. Соучредитель OpenAI и бывший глава Tesla AI Андрей Карпатый отметил, что GPT-4.5 напомнил ему GPT-4 на момент релиза — он увидел потенциал этой модели. В посте на X он сказал, что при использовании GPT-4.5 «всё стало немного лучше, и это здорово, но не совсем так, как можно было бы ожидать». В более резких выражениях высказался известный критик Гэри Маркус, назвавший модель «пустышкой». Генеральный директор Hugging Face Клемент Деланж также остался недоволен, охарактеризовав GPT-4.5 как «так себе» и раскритиковав закрытость исходного кода.
Виктор Тарнавский, директор по ИИ Т-Банка, отметил, что в Яндексе выложили Lite-версию модели в опенсорс, а пайплайн Pro-версии инициализировали весами от Qwen 2.5. По его мнению, это правильное решение, позволяющее избежать бессмысленной траты ресурсов. При этом, пишет Тарнавский, разработчики делают не файнтюн, а полный цикл обучения модели — просто стартуют претрейн не с нулевых весов. По опубликованным бенчмаркам, модели показывают хорошие результаты. В СМИ также писали, что Яндекс работает над ризонингом. Максим Болотских, директор ИИ в Яков и Партнёры (ex-McKinsey), прокомментировал, что ежегодные совокупные затраты на разработку подобного функционала могут составлять 10 млрд рублей и более, и такого рода модели могут монетизироваться не только классическими подписками B2C пользователей, но и значимо лучше решать задачи В2В-сегмента.
Релиз Gemini 2.0 Flash от Google получил восторженные отклики экспертов. Тим Брукс, ИИ-исследователь в Google DeepMind, высоко оценил встроенную функцию генерации изображений с возможностью визуальной цепочки рассуждений. Соучредитель и бывший глава Intel AI Райан Карсон назвал модель "умной, быстрой и дешёвой", отметив отличную производительность при тестировании через API. Мэтт Шумер, соучредитель и генеральный директор компании OthersideAI, подчеркнул, что по большинству бенчмарков Gemini 2.0 Flash приближается к Claude 3.5 Sonnet и даже превосходит его в бенчмарке MATH, сохраняя при этом значительное ценовое преимущество.
Релиз Claude 3.7 от Anthropic получил преимущественно положительные отзывы экспертов. Сэм Альтман и Дарио Амодей подчеркнули экономическую эффективность разработки — обучение Claude 3.7 Sonnet обошлось лишь в несколько десятков миллионов долларов, что значительно меньше затрат на GPT-4. Артём Санакоев, ИИ-исследователь в Meta Generative AI и автор канала "эйай ньюз", выделил инновационный подход Anthropic к рассуждениям модели — в отличие от конкурентов, Claude использует единую модель без отдельного reasoning тюна.
@ai_machinelearning_big_data
#AI #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤9🔥3👏2
Forwarded from Machinelearning
Microsoft Research представила KBLaM - архитектуру, которая решает ключевую проблему LLM — добавление новых внешних знаний. В отличие от традиционных методов файнтюна и RAG, KBLaM кодирует новые для LLM структурированные данные в виде векторных пар «ключ-значение», встраивая их напрямую в слои внимания модели. Это позволяет избежать дорогостоящего дообучения и построение дополнительных модулей, сохраняя линейную масштабируемость даже для баз знаний в 10 000 триплетов.
В KBLaM триплет — это структурированный элемент знания, состоящий из трех компонентов: сущности, свойства и значения. Например, в утверждении «Москва — столица России» сущностью выступает «Москва», свойством — «столица», а значением — «Россия».
В основе KBLaM - «прямоугольный механизм внимания»: языковые токены взаимодействуют с токенами знаний, но не наоборот. Такая структура сокращает вычислительные затраты до линейных, позволяя обрабатывать эквивалент 200 тыс. токенов на одном GPU. При этом модель динамически обновляет знания без пересчёта всей базы — достаточно изменить один триплет.
Эксперименты с KBLaM показали, что он не только эффективен, но и прозрачен: веса внимания визуализируют, какие факты использует модель. Например, при запросе о медицинском диагнозе высокие оценки внимания к соответствующим триплетам снижают риск «галлюцинаций», при этом, если ответ на запрос лежит вне базы знаний, модель отказывается на него отвечать.
Как заявляют авторы, KBLaM — не просто шаг к умным LLM, а мост между обученными на базовых знаниях моделями и реальным миром, где знания постоянно обновляются.
В опубликованном на Github коде для применения KBLaM поддерживаются модели с HF:
и эмбединги для генерации базы знаний:
⚠️ Чтобы добавить поддержку других моделей, необходимо отредактировать скрипты обработки моделей и включить в них адаптер, подобный
llama_model.py
в src/kblam/models
.@ai_machinelearning_big_data
#AI #ML #LLM #MicrosoftResearch #KBLaM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍4❤🔥2❤1🥰1
🚀 Релиз от NVIDIA: Llama-Nemotron-Ultra 253B!
Llama-Nemotron-Ultra — модель с 253B параметрами, специально заточенная под задачи reasoning .
📦 Что внутри:
- LLaMA 405B, радикально преобразованная с помощью NAS pruning
- Пост-тренинг с фокусом на reasoning: SFT + RL
- Вычисления в FP8 для производительности без потери качества
- Open weights + открытые данные
🧠 Подходит для сложных задач рассуждения, настройки под кастомные пайплайны и исследований в области AGI.
🔗 Попробовать: https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
#LLM #NVIDIA #OpenWeights #Reasoning #RLHF #FP8 #AIresearch #HuggingFace
@machinelearning_interview - подписаться
Llama-Nemotron-Ultra — модель с 253B параметрами, специально заточенная под задачи reasoning .
📦 Что внутри:
- LLaMA 405B, радикально преобразованная с помощью NAS pruning
- Пост-тренинг с фокусом на reasoning: SFT + RL
- Вычисления в FP8 для производительности без потери качества
- Open weights + открытые данные
🧠 Подходит для сложных задач рассуждения, настройки под кастомные пайплайны и исследований в области AGI.
🔗 Попробовать: https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
#LLM #NVIDIA #OpenWeights #Reasoning #RLHF #FP8 #AIresearch #HuggingFace
@machinelearning_interview - подписаться
👍9❤3🔥1🤣1