Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Власти КНДР объявили о реформе системы образования, в рамках которой в ведущих университетах страны создаются новые специальности, связанные с искусственным интеллектом. Согласно официальной партийной газете «Нодон синмун», это нужно для подготовки талантов, необходимых для «требований времени».
Этот шаг подтверждает давний интерес страны к передовым технологиям. Исследовательский институт ИИ при Университете имени Ким Ир Сена уже заявил о цели «использовать технологию GPT для замены умственного труда человека». Ранее сообщалось об использовании в институте американского ChatGPT, а научные издания страны посвящали спецвыпуски этой технологии. Аналитики полагают, что Пхеньян намерен применять ИИ не только для технологического развития, но и для укрепления государственного контроля и в разведывательной деятельности.
Lianhe Zaobao
OpenAI готовится в течение нескольких недель запустить собственный веб-браузер с глубокой интеграцией искусственного интеллекта. Новый продукт будет построен на Chromium, но предложит уникальные функции: встроенное окно для общения в стиле ChatGPT и поддержку ИИ-агентов. Эти агенты смогут автономно выполнять задачи пользователей, от бронирования отелей до заполнения онлайн-форм.
Ключевая идея состоит в удержании пользователя внутри интерфейса браузера, а не перенаправлять на внешние сайты. как это происходит сейчаc в ChatGPT. Если OpenAI удастся привлечь хотя бы часть из 500 миллионов еженедельных пользователей ChatGPT, это может серьезно пошатнуть рекламную бизнес-модель Google, которая во многом опирается на данные, собираемые через Chrome.
reuters.com
Модель генерации изображений в стиле аниме основана на Stable Diffusion 1.5, генерирует в разрешении до 1024x1024 пикселей и использует предпоследний слой энкодера CLIP.
Diffusion Anime V2 распространяется под двойной лицензией, которая допускает только некоммерческое использование с обязательным указанием авторства. NovelAI напоминает, что V2 является устаревшей версией, а все новые модели остаются проприетарными и эксклюзивными для их веб-сервиса. Веса Diffusion Anime V2 доступны на Hugging Face.
blog.novelai.net
С 15 июля YouTube вводит более строгие правила для своей партнерской программы, нацеленные на борьбу с массово создаваемыми и повторяющимися видео. Это ответ сервиса на рост генеративных ИИ-инструментов, которые значительно упрощают производство подобного контента.
Хотя представители платформы называют это «незначительным обновлением» и утверждают, что такой контент и раньше не подлежал монетизации, новые правила вносят больше ясности. Ужесточение рассматривается как превентивная мера для защиты YouTube от наплыва низкокачественных видео, способных нанести ущерб репутации и ценности платформы.
techcrunch.com
Google начала развертывание своего ИИ-ассистента Gemini на умных часах, заменяя Google Assistant на носимых устройствах. Обновление уже доступно для Pixel Watch и в ближайшие недели появится на моделях от Samsung, OPPO, OnePlus, Xiaomi и других производителей под управлением Wear OS 4 или новее.
Новый ассистент на часах поддерживает текстовые, голосовые и графические запросы. Активировать Gemini можно привычной командой «Hey Google» или долгим нажатием боковой кнопки. Благодаря глубокой интеграции с сервисами Google, пользователи смогут выполнять многошаговые команды прямо с запястья: просить создать плейлист в YouTube Music или кратко изложить содержание последних писем в Gmail.
Вместе с этим, компания улучшила функцию визуального поиска Circle to Search, добавив в нее специальный "AI Mode" для получения контекстной информации. Улучшение доступно пока только для США и Индии на Android и iOS.
9to5google.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2🔥2🥰2
Forwarded from Machinelearning
Архитектура Mixture-of-Recursions (MoR), предложенная Google в соавторстве с KAIST AI объединяет в едином фреймворке традиционные подходы разделения параметров и адаптивные вычисления, заставляя модель думать над каждым токеном с разной глубиной.
Под капотом MoR - рекурсивный трансформер, который прогоняет входные данные через один и тот же блок слоев несколько раз. Но главная фишка в том, что количество этих прогонов, или глубина рекурсии, не фиксированное, а динамическое и определяется для каждого токена индивидуально.
Легковесный обучаемый роутер анализирует токен и решает, сколько вычислительных усилий на него потратить. Простые слова могут пройти всего один цикл рекурсии, в то время как семантически нагруженные термины отправятся на более глубокую обработку из нескольких циклов.
Это дает два главных преимущества:
При одинаковом бюджете на обучение (в FLOPs) и меньшем размере самой модели MoR показывает более низкую перплексию и лучшие результаты в few-shot задачах, чем стандартные и рекурсивные аналоги.
@ai_machinelearning_big_data
#AI #ML #LLM #Architecture #MoR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤28👍9🔥5😁4
🧠 Intern-S1 — мощная open-source модель для мультимодальных научных задач
Команда InternLM представила Intern-S1 — продвинутую модель, способную обрабатывать и текст, и изображения, включая научные данные.
Что под капотом:
– Языковая модель 235B (MoE) + визуальный энкодер 6B
– Предобучена на 5 триллионах токенов, больше половины — научные данные
– Понимает молекулярные формулы, белковые последовательности, сейсмические сигналы — благодаря динамическому токенизатору
– Сопоставима по качеству с закрытыми коммерческими моделями в научных бенчмарках
🤗 HuggingFace: https://huggingface.co/internlm/Intern-S1-FP8
💻 GitHub: https://github.com/InternLM/Intern-S1
🌐 Онлайн-демо: https://chat.intern-ai.org.cn
@machinelearning_interview
#ml #ai #Intern
Команда InternLM представила Intern-S1 — продвинутую модель, способную обрабатывать и текст, и изображения, включая научные данные.
Что под капотом:
– Языковая модель 235B (MoE) + визуальный энкодер 6B
– Предобучена на 5 триллионах токенов, больше половины — научные данные
– Понимает молекулярные формулы, белковые последовательности, сейсмические сигналы — благодаря динамическому токенизатору
– Сопоставима по качеству с закрытыми коммерческими моделями в научных бенчмарках
🤗 HuggingFace: https://huggingface.co/internlm/Intern-S1-FP8
💻 GitHub: https://github.com/InternLM/Intern-S1
🌐 Онлайн-демо: https://chat.intern-ai.org.cn
@machinelearning_interview
#ml #ai #Intern
❤24🔥11👍7😁2👨💻2
🚀 MLE‑STAR от Google Research — новый state‑of‑the‑art агент для ML-инжиниринга
Google представил MLE‑STAR — агент на основе LLM, который автоматизирует ML-задачи разных типов (табличные данные, изображения, текст и др.) и достигает высот в сравнении с предыдущими подходами.
Что нового:
• Использует веб‑поиск для поиска современных моделей и примеров кода, чтобы создать начальное решение
• Делает абляционный анализ (ablation study), чтобы определить наиболее влиятельный компонент в ML-пайплайне, и итеративно дорабатывает его
• Развивает энсемблирование: генерирует несколько решений и собирает их в одно улучшенное, опираясь на стратегию агента
• Включает модули контроля: дебаггер, проверку утечек данных и контроль использования всех источников данных, чтобы избежать плохих практик
🧪 Результаты:
MLE‑STAR выигрывает медали в 63–64 % из бенчмарка MLE‑Bench‑Lite (Kaggle), обгоняя лучшие существующие методы (~25–26 %)
🛠 В чем плюсы:
- Снижает порог входа в ML для инженеров и организаций
- Обеспечивает адаптивность: агент извлекает свежие знания из сети, поэтому решения автоматически улучшаются с развитием ML
- Открытый исходный код — можно протестировать или встроить в собственные пайплайны
💡 Как работает:
1. Поиск нужных моделей через веб
2. Генерация и слияние лучших кандидатов
3. Абляционный анализ → выбор блока → уточнение этого блока
4. Итеративное улучшение и объединение ансамблей
5. Контрольные модули: дебаг, утечки, использование данных
🔜 Подробнее
@machinelearning_interview
#Google #GoogleResearch #ml #mle #llm
Google представил MLE‑STAR — агент на основе LLM, который автоматизирует ML-задачи разных типов (табличные данные, изображения, текст и др.) и достигает высот в сравнении с предыдущими подходами.
Что нового:
• Использует веб‑поиск для поиска современных моделей и примеров кода, чтобы создать начальное решение
• Делает абляционный анализ (ablation study), чтобы определить наиболее влиятельный компонент в ML-пайплайне, и итеративно дорабатывает его
• Развивает энсемблирование: генерирует несколько решений и собирает их в одно улучшенное, опираясь на стратегию агента
• Включает модули контроля: дебаггер, проверку утечек данных и контроль использования всех источников данных, чтобы избежать плохих практик
🧪 Результаты:
MLE‑STAR выигрывает медали в 63–64 % из бенчмарка MLE‑Bench‑Lite (Kaggle), обгоняя лучшие существующие методы (~25–26 %)
🛠 В чем плюсы:
- Снижает порог входа в ML для инженеров и организаций
- Обеспечивает адаптивность: агент извлекает свежие знания из сети, поэтому решения автоматически улучшаются с развитием ML
- Открытый исходный код — можно протестировать или встроить в собственные пайплайны
💡 Как работает:
1. Поиск нужных моделей через веб
2. Генерация и слияние лучших кандидатов
3. Абляционный анализ → выбор блока → уточнение этого блока
4. Итеративное улучшение и объединение ансамблей
5. Контрольные модули: дебаг, утечки, использование данных
@machinelearning_interview
#Google #GoogleResearch #ml #mle #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤28🔥12👍3👨💻1
Forwarded from Machinelearning
Попросите любую LLM написать CUDA-код, и скорее всего, вы получите что-то, что либо не компилируется, либо работает мучительно медленно. Причина проста: качественного CUDA-кода в обучающих данных моделей почти не было.
Чтобы исправить это досадное упущение, Deep Reinforce AI создали систему CUDA-L1, которая основана на трехэтапном пайплайне: сначала supervised-обучение для освоения основ, затем self-supervised для практики и, наконец, контрастное обучение с подкреплением, чтобы было все максимально быстро.
Для этого существующий код был аугментирован - создавались его вариации, чтобы повысить насмотренность модели.
Обучаемой модели показывали несколько реализаций CUDA-ядер вместе с их показателями ускорения, например: «kernel_v1 дает ускорение 1.2x», «kernel_v2 — 2.8x», а «kernel_v3 — 1.5x». Затем задали 3 вопроса:
Таким образом, модель не гадает вслепую, а учится на конкретных примерах, анализируя причины разницы в производительности.
После обучения выяснилось, что более 30% сгенерированных реализаций пытались сжульничать - создавали дополнительные CUDA-потоки, которые выполнялись асинхронно.
Поскольку бенчмарк KernelBench отслеживал время только на основном потоке, код выглядел быстрее, чем был на самом деле, показывая фиктивное ускорение в 18 раз.
Другие уловки состояли в манипуляции гиперпараметрами задачи (уменьшение batch_size или размерностей) и кеширование результатов вычислений.
Во-первых, в качестве "адвоката дьявола" взяли adversarial-чекер на базе DeepSeek-R1, который анализировал код на предмет эксплойтов с точностью обнаружения более 60%.
Во-вторых, собрали базу данных из более чем 500 уникальных паттернов взлома, это повысило точность обнаружения на 25%.
И в-третьих, применили математическое сглаживание и нормализацию наград, где любое подозрительное ускорение (от 1.5x для простых операций) дополнительно проверялось.
Система успешно сгенерировала рабочий код для 249 из 250 задач, причем в 240 случаях код оказался быстрее базовой реализации.
Среднее ускорение по всем задачам составило 3.12 раза, максимальное - аж 120 раз. Медианное ускорение (50-й перцентиль) составило 1.42x, а 75-й перцентиль — 2.25x.
Производительность по уровням сложности задач распределилась следующим образом: на простых операциях среднее ускорение составило 2.78x, на последовательностях операторов - 3.55x, а на сложных задачах вроде полных слоев трансформера - 2.96x.
Код, оптимизированный на NVIDIA A100, был протестирован на других GPU. Результаты показали, что найденные паттерны оптимизации фундаментальны и работают на разных архитектурах.
Среднее ускорение на H100 составило 2.39x (успешных ускорений 227 из 250), на L40 — 3.12x (228/248), а на потребительской RTX 3090 — 2.50x (213/242).
@ai_machinelearning_big_data
#AI #ML #CUDA #DeepReinforce #ContrastiveRL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤23👍10🔥5👨💻1
Forwarded from Machinelearning
На конференции SIGGRAPH 2025 Nvidia представила свою центральную концепцию — "Физический ИИ".
Это конвергенция ИИ и компьютерной графики для создания систем, способных действовать в реальном мире, будь то роботы, автономные автомобили или умная инфраструктура.
Для дата-центров представили GPU Nvidia RTX PRO 6000 Blackwell Server Edition для стандартных корпоративных серверов форм-фактора 2U. Системы на его базе смогут достигать до 45 раз более высокой производительности и в 18 раз лучшей энергоэффективности по сравнению с чисто процессорными решениями.
Тензорные ядра пятого поколения с поддержкой формата FP4 бустят инференс в 6 раз по сравнению с предыдущим поколением L40S.
Для рабочих станций анонсировали две компактные видеокарты: Nvidia RTX PRO 4000 SFF Edition и RTX PRO 2000 Blackwell.
Первая обеспечивает до 2.5 раз более высокую производительность в ИИ-задачах при том же энергопотреблении в 70 Вт, а вторая в 1.4 раза быстрее в CAD-приложениях.
Для Omniverse анонсировали новую библиотеку
NuRec
, которая реконструирует реальные окружения из данных сенсоров с помощью 3D Gaussian splatting. Приложения для симуляции Isaac Sim 5.0 и Isaac Lab 2.2 теперь доступны в виде опенсорс-проектов на GitHub.
В качестве примера показали кейс Amazon, где CAD-модели новых продуктов загружаются в Isaac Sim для генерации более 50 000 синтетических изображений. На этих данных обучаются ИИ-модели, которые затем управляют роботизированными манипуляторами для контроля качества продукции — и все это без каких-либо физических модификаций оборудования.
Для корпоративных задач линейку Nemotron расширили моделями Nemotron Nano 2 и Llama Nemotron Super 1.5. Они предназначены для выполнения сложных многоэтапных задач в кибербезопасности или клиентском сервисе.
Специально для "Физического ИИ" была разработана 7-миллиардная VLM Cosmos Reason. Ее задача - позволить роботам и агентам интерпретировать физический мир, используя априорные знания, понимание физики и "здравый смысл". Эту модель уже использует Uber для для анализа поведения автономных автомобилей.
Платформа дополнена интеграцией с VLM Cosmos Reason, новыми vision-моделями в TAO Toolkit и расширениями для Isaac Sim, позволяющие генерировать редкие сценарии обучения.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21🔥6❤4
DINO создаёт высококачественные плотные признаки, отлично понимая как смысл (семантику) сцены, так и её геометрию.
Зачем это нужно:
Раньше на ImageNet лучшие результаты показывали модели с полной или слабой разметкой. Теперь DINOv3 с чистым SSL догнал их по качеству — и это огромный шаг вперёд.
Модель особенно хороша в задачах, где важны детальные признаки: мульти-модальные LLM, видео и 3D-анализ, робототехника, генеративные модели.
С замороженным ❄️ backbone DINOv3 получены новые рекорды:
- Обнаружение объектов: 66.1 mAP (COCO)
- Сегментация: 63 mIoU (ADE)
- Оценка глубины: 4.3 ARel (NYU)
Даже встраивание в готовые пайплайны даёт новый SOTA.
- ViT-7B — флагман
- ViT-S/S+/B/L/H+ (от 21M до 840M параметров)
- ConvNeXt — для быстрого инференса
- Text-aligned ViT-L (dino.txt)
- ViT-L/7B для спутниковых снимков
📡 Для спутниковых данных DINOv3 даёт топовые результаты в геопространственных задачах, например в оценке высоты деревьев, и создаёт впечатляющие карты признаков.
Это и есть магия SSL — универсальные признаки, которые работают в самых разных областях.
@machinelearning_interview
#dino3 #cv #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥34❤11🥰4👍1