Machine learning Interview
47.7K subscribers
1.18K photos
87 videos
14 files
804 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
加入频道
🧠 Андрей Карпаты выпустил интересный пост о масштабировании RL.

Все говорят о масштабировании RL — и не зря. Но ощущение, что это только часть большой картины.

Вчера обсуждали с другом: Reinforcement Learning даёт более масштабируемую обратную связь, чем SFT, и это действительно мощный рычаг. Вместо явных меток — просто: "получилось хорошо → усилим действия", "плохо → ослабим". Но...

🔸 Проблема №1 — асимптотика
Как только задача выходит за пределы секунд и становится минутами/часами взаимодействий, RL сводится к тому, что ты делаешь тонну действий, чтобы в конце получить одну скалярную метку — и по ней обновить весь градиент? Это кажется неэффективным.

🔸 Проблема №2 — не по-человечески
Мы (люди) улучшаемся не только по результату "успех/провал". Мы рефлексируем:
- Что сработало?
- Что нет?
- Что стоит попробовать в следующий раз?

Этот "урок" мы потом либо держим в голове, либо записываем. Он становится частью интуиции или инструкции. В языке это называют *second nature*.
И таких механизмов в обучении ИИ пока нет.

🔍 Пример алгоритма:
1. Несколько rollout'ов
2. Все примеры + награды → в один контекст
3. Промпт на рефлексию: *"Что сработало? Что улучшить?"*
4. Сгенерированная строка → системный промпт или база "уроков"

Это и есть lesson-инъекция. Например, в Claude было явно прописано:
> "Если тебя просят посчитать буквы — раздели по запятым и считай по одному"

Это патч-урок, не выученный, а вручную внедрённый. Вопрос: как заставить агента учить такие уроки сам? И — как потом их дистиллировать, чтобы не раздувать контекст?

🧭 TLDR:
- RL будет давать приросты — оно более “горькое”, но и более leverage‑friendly, чем SFT
- Но это не вся история
- Реальные "S-кривые" могут скрываться в новых парадигмах обучения, которые специфичны для LLM и не похожи на Atari или роботов
- Возможно, "рефлексия → урок → встроенная привычка" — это один из недостающих слоёв в современных системах

#AI #RL #LLM #agenticlearning #meta #reinforcementlearning

@machinelearning_interview
👍2515🔥4🍓4🤪1
🎓 Новые лекции от UCLA: *Reinforcement Learning of Large Language Models* (весна 2025)

Свежий курс, полностью посвящённый обучению LLM с помощью RL. Отличный ресурс для тех, кто хочет разобраться не только в RLHF, но и в новых направлениях, которые появляются на стыке обучения с подкреплением и больших языковых моделей.

📚 Что в курсе:
– Базовые принципы RL применительно к LLM
– RLHF (reinforcement learning from human feedback)
– RL с верифицируемыми наградами (RLVR)
– RL на этапе inference: оптимизация в момент выполнения
– Архитектуры, policy shaping, reward modeling и др.

Это не просто обзор — это системная попытка осмыслить будущее RL для LLM, где важно не только fine-tuning, но и работа с обратной связью в режиме реального времени, доверие к награде и оптимизация вычислений.

🧠 Полезно всем, кто:
– интересуется агентами и автономными системами
– работает над LLM‑продуктами
– хочет выйти за пределы SFT и попробовать более «горькие» методы обучения

#LLM #RLHF #RLVR #AIeducation #ReinforcementLearning #UCLA

🔜 Youtube: https://youtube.com/playlist?list=PLir0BWtR5vRp5dqaouyMU-oTSzaU5LK9r

🔜 Курс: https://ernestryu.com/courses/RL-LLM.html
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44🔥1715💯9